Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In I therapies internal dosimetry is crucial for determining the mean absorbed dose to organs at risk, particularly the bone marrow, which has a dose constraint of 2 Gy. Traditionally, multicompartmental models have been used for bone marrow dosimetry, necessitating whole-body absorbed-dose assessments. However, noninvasive techniques, such as γ-camera scans or ceiling-mounted Geiger-Müller (GM) counters, can estimate the aforementioned. This study was aimed to evaluate the agreement between whole-body mean absorbed dose using γ-camera scans and ceiling-mounted GM in patients with thyroid carcinoma undergoing I therapy. This study included 31 patients with thyroid cancer who were treated with I. The whole-body time-integrated activity (TIA) and mean absorbed dose were estimated using the elimination curves obtained with γ-camera scans and ceiling-mounted GM. In addition, statistical analysis was performed on the data to determine the Coefficient Correlation Coefficient and the Bland-Altman limits of agreement for both parameters, as well as for the elimination curves' effective half-life. The study revealed correlations of 0.562 and 0.586 between whole-body TIA and mean absorbed dose, respectively. The Bland-Altman limits of agreement were found to be below -3.75% and within 12.75% of the bone marrow dose constraint of 2 Gy. The nonparametric evaluation revealed that whole-body TIA and mean absorbed dose medians from GM were lower than those from γ-camera scans ( < 0.001). Effective half-life estimation mean was significantly lower in the GM than in the γ-camera of 13 and 23 h. Although GM calculates the whole-body absorbed dose with margins of error within clinical acceptance, underestimation of the effective half-life makes it an unacceptable substitute method for γ-cameras in clinical practice. Further research should be conducted to evaluate single-point GM measurement substitutions in time-activity curves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cbr.2022.0094 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!