A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanistic Investigation of Ni-Catalyzed Reductive Cross-Coupling of Alkenyl and Benzyl Electrophiles. | LitMetric

Mechanistic Investigation of Ni-Catalyzed Reductive Cross-Coupling of Alkenyl and Benzyl Electrophiles.

J Am Chem Soc

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Published: July 2023

Mechanistic investigations of the Ni-catalyzed asymmetric reductive alkenylation of -hydroxyphthalimide (NHP) esters and benzylic chlorides are reported. Investigations of the redox properties of the Ni-bis(oxazoline) catalyst, the reaction kinetics, and mode of electrophile activation show divergent mechanisms for these two related transformations. Notably, the mechanism of C(sp) activation changes from a Ni-mediated process when benzyl chlorides and Mn are used to a reductant-mediated process that is gated by a Lewis acid when NHP esters and tetrakis(dimethylamino)ethylene is used. Kinetic experiments show that changing the identity of the Lewis acid can be used to tune the rate of NHP ester reduction. Spectroscopic studies support a Ni-alkenyl oxidative addition complex as the catalyst resting state. DFT calculations suggest an enantiodetermining radical capture step and elucidate the origin of enantioinduction for this Ni-BOX catalyst.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347553PMC
http://dx.doi.org/10.1021/jacs.3c02649DOI Listing

Publication Analysis

Top Keywords

nhp esters
8
lewis acid
8
mechanistic investigation
4
investigation ni-catalyzed
4
ni-catalyzed reductive
4
reductive cross-coupling
4
cross-coupling alkenyl
4
alkenyl benzyl
4
benzyl electrophiles
4
electrophiles mechanistic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!