Due to inadequate insect-pollinator data, particularly in sub-Saharan African countries like Tanzania, it is difficult to manage and protect these species in disturbed and semi-natural areas. Field surveys were conducted to assess insect-pollinator abundance and diversity and their interactions with plants in disturbed and semi-natural areas in Tanzania's Southern Highlands using pan traps, sweep netting, transect counts, and timed observations techniques. We found that species diversity and richness of insect-pollinators were high in semi-natural areas, and there was 14.29% more abundance than in disturbed areas. The highest plant-pollinator interactions were recorded in semi-natural areas. In these areas, the total number of visits by Hymenoptera was more than three times that of Coleoptera, while that of Lepidoptera and Diptera was more than 237 and 12 times, respectively. Hymenoptera pollinators had twice the total number of visits of Lepidoptera, and threefold of Coleoptera, and five times more visits than Diptera in disturbed habitats. Although disturbed areas had fewer insect-pollinators and fewer plant-insect-pollinator interactions, our findings indicate that both disturbed and semi-natural areas are potential habitats for insect-pollinators. The study revealed that the over-dominant species could influence diversity indices and network-level metrics in the study areas. When was excluded from the analysis, the number of interactions differed significantly between insect orders in the study areas. Also, Diptera pollinators interacted with the most flowering plants in both study areas compared to Hymenopterans. Though was excluded in the analysis, we found a high number of species in semi-natural areas compared to disturbed areas. Conclusively, we recommend that more studies be conducted in these areas across sub-Saharan Africa to unveil their potential for protecting insect-pollinators and how ongoing anthropogenic changes threaten them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358636 | PMC |
http://dx.doi.org/10.1177/00368504231184035 | DOI Listing |
Environ Entomol
January 2025
Department of Entomology, University of Georgia, Tifton, GA, USA.
Wild bee communities are the target of various conservation and ecological restoration programs. Strategic conservation can influence bee communities visiting fields and help mitigate pollinator limitations in fruit production. However, planning compatible conservation strategies and gauging their effectiveness requires understanding how local communities vary across space and time in crops and adjacent semi-natural areas.
View Article and Find Full Text PDFData Brief
February 2025
Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 5, 00014, Finland.
High Nature Value (HNV) farming systems occur in areas where the major land use is agriculture and are characterized by their significance in promoting biodiversity and ecosystem services due to their extensive land use. Despite their importance for ecological and socio-economic resilience of rural regions, these systems are often overlooked in Life Cycle Assessment (LCA) studies due to challenges in data compilation, especially from small local farms and because of the diversity of production. To address this gap, we established an international collaborative network across Europe, involving professionals directly engaged with farmers, farmer associations, and researchers to collect data on HNV farms employing a developed questionnaire examining inputs and outputs, farm structures, and herd characteristics.
View Article and Find Full Text PDFEnviron Manage
January 2025
Consiglio Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, Pisa, Italy.
The Nature Restoration Law adopted by the European Union in 2024 aims to implement measures to restore at least 20% of its land and sea by 2030 and all ecosystems in need of restoration by 2050, focusing on among others agricultural land, forests, urban, marine, freshwater, and wetlands areas. The goal is to enhance the natural and semi-natural habitats' role in achieving climate targets and preserving biodiversity. Member States must submit detailed national restoration plans, outlining specific actions and mechanisms for monitoring progress.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.
View Article and Find Full Text PDFChemosphere
February 2025
Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, RJ, 21941-909, Brazil. Electronic address:
Peri-urban conserved natural or semi-natural areas provide several ecosystem services and assist in reducing air pollution in cities. The aim of this study is to assess the contribution to the improvement of air quality of a small area (<1 km) adjacent to a city in the Metropolitan Region of Rio de Janeiro (Brazil), which is seriously affected by vehicular and industrial emissions of pollutants. Hydrocarbon (HC) and carbonyl compounds (CC) levels were determined, by employing TO-15 and TO-11A US EPA Methods, respectively, in both the urban and green areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!