Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on N-B bonds, a novel strategy was developed for improving the energetic performance of tetrazoles. By employing the amino neighboring group participation, the azolyl borane compound 7 was selectively constructed, which exhibited excellent stability in water and air. This strategy solved the acidity problem of tetrazole as well as increasing the heat of detonation and combustion by 25% and 36%, respectively. Through laser ignition experiments, it also improved the combustion performance of tetrazoles. In DSC experiments, thermal decomposition temperatures of N-B covalent compounds were elevated as well. In an electrostatic potential calculation and sensitivity test, N-B covalent compounds exhibited good sensitivity (IS > 40 J and FS > 360 N). Through TG-DSC-FTIR-MS and IR experiments, decomposition products were investigated to determine the next optimization stage for heat of detonation. It offered a significant potential for development to incorporate the N-B bond into nitrogen-rich compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt04050f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!