The SEEG methodology has gained favor in North America over the last decade as a means of localizing the epileptogenic zone (EZ) prior to epilepsy surgery. Recently, the application of a robotic stereotactic guidance system for implantation of SEEG electrodes has become more popular in many epilepsy centers. The technique for the use of the robot requires extreme precision in the pre-surgical planning phase and then the technique is streamlined during the operative portion of the methodology, as the robot and surgeon work in concert to implant the electrodes. Herein is detailed precise operative methodology of using the robot to guide implantation of SEEG electrodes. A major limitation of the procedure, namely its heavy reliance on the ability to register the patient to a preoperative volumetric magnetic resonance image (MRI), is also discussed. Overall, this procedure has been shown to have a low morbidity rate and an extremely low mortality rate. The use of a robotic stereotactic guidance system for the implantation of SEEG electrodes is an efficient, fast, safe, and accurate alternative to conventional manual implantation strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/59456 | DOI Listing |
Ecancermedicalscience
November 2024
Cyberknife and Tomotherapy Center, Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan.
Introduction: The role of stereotactic radiosurgery (SRS) in pituitary adenomas (PAs) is evolving especially considering its safety. Existing literature is hampered by limited sample sizes and short-term follow-ups, impeding its preeminence in the clinical and radiological outcomes. We propose a comprehensive, single-centred study to evaluate the outcomes following CyberKnife stereotactic radiosurgery (CK SRS) for PAs in a larger patient population, incorporating meticulous clinical and radiological follow-up.
View Article and Find Full Text PDFStrahlenther Onkol
January 2025
Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
Purpose: This study aimed to evaluate the prognostic significance of magnetic resonance imaging (MRI) parameters on biochemical failure-free survival (BFS) in patients diagnosed with intermediate-risk prostate cancer and treated with robotic ultrahypofractionated stereotactic body radiotherapy (SBRT) without androgen deprivation therapy (ADT).
Methods: A retrospective analysis was conducted in patients with intermediate-risk prostate cancer undergoing robotic SBRT delivered in five fractions with a total radiation dose of 35-36.25 Gy.
Technol Cancer Res Treat
January 2025
Department of Clinical Oncology, Medical University of Plovdiv, Plovdiv, Bulgaria.
The contemporary concept of carcinogenesis summarizes the role of hypoxia, neoangiogenesis, and hemostasis, including in the stage of progression and metastasis of the tumor process. Metastatic disease is a serious therapeutic challenge for any oncological condition. The purpose of this study was to evaluate the dynamics of specific indicators of neoangiogenesis and hypoxia as potential biomarkers for therapeutic efficacy or risk of disease progression in patients with brain metastases (BM) undergoing robotic stereotactic radiosurgery.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
Stereotactic radiosurgery (SRS) and radiotherapy (SRT) have gained prominence as both adjuvant and primary treatment options for patients with skull base tumors that are either inoperable or present as residual or recurrent lesions post-surgery. The object of the current study is to evaluate the safety and efficacy of robotic-assisted SRS and SRT across various skull base pathologies. The study was conducted under PRISMA guidelines and involved a comprehensive evaluation of databases, including PubMed, Scopus, Embase, Web-of-Science, and the Cochrane Library.
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Neurosurgery, University of California, Irvine, Orange, United States.
Background: Stereoelectroencephalography (SEEG) is a common diagnostic surgical procedure for patients with medically refractory epilepsy. We aimed to describe our initial experience with the recently released NeuroOne Evo SEEG electrode product (Zimmer Biomet, Warsaw, IN) and review technical specifications for other currently approved depth SEEG electrodes.
Methods: We performed a record review on the first five patients implanted with NeuroOne Evo SEEG electrode product using the robotic stereotactic assistance robot platform and described our surgical technique in detail.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!