The marine, bloom-forming dinoflagellate CCMP 1329 (formerly ) has a genome atypical of eukaryotes, with a large size of ~4.15 Gbp, organized in plentiful, highly condensed chromosomes and packed in a dinoflagellate-specific nucleus (dinokaryon). Here, we apply microscopic and proteogenomic approaches to obtain new insights into this enigmatic nucleus of axenic . High-resolution focused ion beam/scanning electron microscopy analysis of the flattened nucleus revealed highest density of nuclear pores in the vicinity of the nucleolus, a total of 62 tightly packed chromosomes (~0.4-6.7 µm), and interaction of several chromosomes with the nucleolus and other nuclear structures. A specific procedure for enriching intact nuclei was developed to enable proteomic analyses of soluble and membrane protein-enriched fractions. These were analyzed with geLC and shotgun approaches employing ion-trap and timsTOF (trapped-ion-mobility-spectrometry time-of-flight) mass spectrometers, respectively. This allowed identification of 4,052 proteins (39% of unknown function), out of which 418 were predicted to serve specific nuclear functions; additional 531 proteins of unknown function could be allocated to the nucleus. Compaction of DNA despite very low histone abundance could be accomplished by highly abundant major basic nuclear proteins (HCc2-like). Several nuclear processes including DNA replication/repair and RNA processing/splicing can be fairly well explained on the proteogenomic level. By contrast, transcription and composition of the nuclear pore complex remain largely elusive. One may speculate that the large group of potential nuclear proteins with currently unknown functions may serve yet to be explored functions in nuclear processes differing from those of typical eukaryotic cells. IMPORTANCE Dinoflagellates form a highly diverse group of unicellular microalgae. They provide keystone species for the marine ecosystem and stand out among others by their very large, unusually organized genomes embedded in the nuclei markedly different from other eukaryotic cells. Functional insights into nuclear and other cell biological structures and processes of dinoflagellates have long been hampered by the paucity of available genomic sequences. The here studied cosmopolitan belongs to the harmful algal bloom-forming, marine dinoflagellates and has a recently assembled genome. We present a detailed 3D reconstruction of the nucleus together with comprehensive proteogenomic insights into the protein equipment mastering the broad spectrum of nuclear processes. This study significantly advances our understanding of mechanisms and evolution of the conspicuous dinoflagellate cell biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449503 | PMC |
http://dx.doi.org/10.1128/msphere.00038-23 | DOI Listing |
Philos Trans A Math Phys Eng Sci
December 2024
Department of Physics and Astronomy, University of Exeter, Exeter, Devon EX4 4QL, UK.
Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states.
View Article and Find Full Text PDFFront Immunol
December 2024
Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, China.
Rheumatoid arthritis (RA) is an important autoimmune disease that affects synovial tissues, accompanied by redness, pain, and swelling as main symptoms, which will limit the quality of daily life and even cause disability. Multiple coupling effects among the various cells in the synovial micro-environment modulate the poor progression and development of diseases. Respectively, synovium is the primary target tissue of inflammatory articular pathologies; synovial hyperplasia, and excessive accumulation of immune cells lead to joint remodelling and destroyed function.
View Article and Find Full Text PDFHeliyon
December 2024
Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
Heart failure (HF) syndrome is of great interest as an emerging epidemic. Due to the increasing elderly population worldwide, the total number of HF patients is increasing every day. This disease places a significant economic burden on the healthcare and treatment systems of developing societies, and this situation is very concerning.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Systems Biology, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
Cell signaling pathways are enriched for biological processes crucial for cellular communication, response to external stimuli, and metabolism. Here, a cell signaling-focused CRISPR screen identified cytochrome c oxidase subunit 4 isoform 1 (COX4I1) as a novel vulnerability in acute myeloid leukemia (AML). Depletion of COX4I1 hindered leukemia cell proliferation and impacted in vivo AML progression.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China. Electronic address:
The brain is a highly complex and delicate system, and its internal neural processes are manifested as the interweaving and superposition of multi-frequency neural signals. However, traditional brain network studies are often limited to the whole frequency band or a specific frequency band, ignoring the potentially profound impact of the diversity of information within the frequency on the dynamics of brain networks. To comprehensively and deeply analyze this phenomenon, the present study is devoted to exploring the specific performance of brain networks at different frequencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!