Transduced mouse immature thymocytes can be differentiated into T cells in vitro using the delta-like 4-expressing bone marrow stromal cell line co-culture system (OP9-DL4). As retroviral transduction requires dividing cells for transgene integration, OP9-DL4 provides a suitable in vitro environment for cultivating hematopoietic progenitor cells. This is particularly advantageous when studying the effects of the expression of a specific gene during normal T cell development and leukemogenesis, as it allows researchers to circumvent the time-consuming process of generating transgenic mice. To achieve successful outcomes, a series of coordinated steps involving the simultaneous manipulation of different types of cells must be carefully performed. Although these are very well-established procedures, the lack of a common source in the literature often means a series of optimizations are required, which can be time-consuming. This protocol has been shown to be efficient in transducing primary thymocytes followed by differentiation on OP9-DL4 cells. Detailed here is a protocol that can serve as a quick and optimized guide for the co-culture of retrovirally transduced thymocytes on OP9-DL4 stromal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786201PMC
http://dx.doi.org/10.3791/64271DOI Listing

Publication Analysis

Top Keywords

delta-like 4-expressing
8
stromal cells
8
cells
6
co-culture transduction
4
transduction murine
4
thymocytes
4
murine thymocytes
4
thymocytes delta-like
4
4-expressing stromal
4
cells study
4

Similar Publications

Macrophages are key players in the immune response and have been implicated in various human diseases, including atherosclerosis, cancer, and chronic inflammatory disorders. While numerous studies have delved into the nuances of macrophage behavior in these conditions, there remains a gap in understanding the specific role of Delta-like ligand 4 (Dll4)-expressing macrophages and their overarching implications across these diseases. Among the plethora of factors expressed by macrophages, Dll4 has emerged as a molecule of particular interest.

View Article and Find Full Text PDF

Transduced mouse immature thymocytes can be differentiated into T cells in vitro using the delta-like 4-expressing bone marrow stromal cell line co-culture system (OP9-DL4). As retroviral transduction requires dividing cells for transgene integration, OP9-DL4 provides a suitable in vitro environment for cultivating hematopoietic progenitor cells. This is particularly advantageous when studying the effects of the expression of a specific gene during normal T cell development and leukemogenesis, as it allows researchers to circumvent the time-consuming process of generating transgenic mice.

View Article and Find Full Text PDF

Induction of T-cell development by Delta-like 4-expressing fibroblasts.

Int Immunol

October 2013

Department of Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, M4N 3M5 Canada.

The thymus provides a unique environment for the induction of T-cell lineage commitment and differentiation, which is predicted by specific Notch ligand-receptor interactions on epithelial cells and lymphoid progenitors, respectively. Accordingly, a bone marrow-derived stromal cell line (OP9) ectopically expressing the Notch ligand Delta-like 1 (Dll1) or Dll4 (OP9-DL1 and OP9-DL4, respectively) gains the ability to recapitulate thymus-like function, supporting T-cell differentiation of both mouse and human progenitors. In this study, we extend these findings by demonstrating that, unlike the NIH3T3 cell line, mouse primary fibroblasts made to express Dll4 (mFibro-DL4) acquire the capacity to promote and support T-cell development from hematopoietic stem cells (HSCs) into TCRαβ(+), CD4(+) and CD8(+) T-lineage cells.

View Article and Find Full Text PDF

Inflammatory neovascularization, such as choroidal neovascularization (CNV), occur in the presence of Notch expressing macrophages. DLL4s anti-angiogenic effect on endothelial cells (EC) has been widely recognized, but its influence on Notch signaling on macrophages and its overall effect in inflammatory neovascularization is not well understood. We identified macrophages and ECs as the main Notch 1 and Notch 4 expressing cells in CNV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!