Primate fingers are typically in direct contact with the environment during both locomotion and manipulation, and aspects of external phalangeal morphology are known to reflect differences in hand use. Since bone is a living tissue that can adapt in response to loading through life, the internal bone architecture of the manual phalanges should also reflect differences in manual behaviours. Here, we use the R package Morphomap to analyse high-resolution microCT scans of hominid proximal phalanges of digits 2-5 to determine whether cortical bone structure reflects variation in manual behaviours between bipedal (Homo), knuckle-walking (Gorilla, Pan) and suspensory (Pongo) taxa. We test the hypothesis that relative cortical bone distribution patterns and cross-sectional geometric properties will differ both among extant great apes and across the four digits due to locomotor and postural differences. Results indicate that cortical bone structure reflects the varied hand postures employed by each taxon. The phalangeal cortices of Pongo are significantly thinner and have weaker cross-sectional properties relative to the African apes, yet thick cortical bone under their flexor sheath ridges corresponds with predicted loading during flexed finger grips. Knuckle-walking African apes have even thicker cortical bone under the flexor sheath ridges, as well as in the region proximal to the trochlea, but Pan also has thicker diaphyseal cortices than Gorilla. Humans display a distinct pattern of distodorsal thickening, as well as relatively thin cortices, which may reflect the lack of phalangeal curvature combined with frequent use of flexed fingered hand grips during manipulation. Within each taxon, digits 2-5 have a similar cortical distribution in Pongo, Gorilla and, unexpectedly, Homo, which suggest similar loading of all fingers during habitual locomotion or hand use. In Pan, however, cortical thickness differs between the fingers, potentially reflecting differential loading during knuckle-walking. Inter- and intra-generic variation in phalangeal cortical bone structure reflects differences in manual behaviours, offering a comparative framework for reconstructing hand use in fossil hominins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557399 | PMC |
http://dx.doi.org/10.1111/joa.13918 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmacology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina.
Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.
Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.
J Clin Med
January 2025
Surgical Oncology Department, Emergency County Hospital Oradea, Strada Gheorghe Doja 65, 410169 Oradea, Romania.
: Sleeve gastrectomy (SG) is increasingly used to treat severe obesity in adolescents, but its effects on bone health during this critical period of bone accrual are not fully understood. This systematic review aims to evaluate the impact of SG on the bone mineral density (BMD), bone microarchitecture, marrow adipose tissue (MAT), and bone turnover markers in adolescents. : A comprehensive literature search was conducted to identify studies assessing bone health outcomes in adolescents undergoing SG.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Orthopaedic Surgery, Chosun University Hospital, 365 Pilmundae-ro, Dong-gu, Gwangju 61453, Republic of Korea.
Managing periprosthetic femoral fractures is challenging, particularly in osteoporotic patients with fragile bones. Revision with a long stem is commonly considered but may fail to provide adequate fixation and stability in fragile bones. A novel approach using sandwiched strut allografts and controlled bone crushing with robust cable fixation can offer mechanical support and provide secondary stability to the loosened femoral stem and can be considered a treatment option for low-demand patients.
View Article and Find Full Text PDFBiomedicines
December 2024
Jean Lamour Institute, Department of Micro and Nanomechanics for Life, University of Lorraine, UMR 7198, 54011 Nancy, France.
Oral implantology faces a multitude of technical challenges in light of current clinical experience, underlining the need for innovation in implantable medical devices in both mechanical and biological terms. This study explores the influence of the thickness factor of calcium-doped zirconia (Ca-SZ) coatings deposited by PVD on their intrinsic mechanical properties and the determinism of the latter on adhesion to the TA6V alloy substrate after mechanical loading for applications in dental implantology. Three separate thicknesses of 250 nm, 450 nm and 850 nm were evaluated in terms of mechanical strength, modulus of elasticity and adhesion to the substrate, in accordance with ISO 20502:2005.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA.
There are three FAM98 family proteins (FAM98A/B/C) in humans and mice. Their physiological functions remain largely unknown. We have previously reported that Fam98a interacts with Plekhm1 in murine osteoclasts and functions in lysosome trafficking/secretion and bone resorption in osteoclasts in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!