A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Top-Down Analysis of Supercharged Proteins Using Collision-, Electron-, and Photon-Based Activation Methods. | LitMetric

The impact of supercharging on the fragmentation patterns of six proteins, ubiquitin, cytochrome c, staph nuclease, myoglobin, dihydrofolate reductase, and carbonic anhydrase, was investigated for five activation methods, HCD, ETD, EThcD, 213 nm UVPD, and 193 nm UVPD under denaturing conditions. Changes in sequence coverage, alterations in the number and abundance of preferential cleavages (N-terminal to proline, C-terminal to aspartic or glutamic acid, adjacent to aromatic residues), and changes in individual fragment ion abundances were evaluated. Large decreases in sequence coverage were observed upon supercharging of proteins activated by HCD, whereas modest gains were observed for ETD. Minimal changes in sequence coverage were observed when using EThcD, 213 nm UVPD, and 193 nm UVPD, all of which tended to display the highest sequence coverages of the activation methods. Specific preferential backbone cleavage sites were increasingly enhanced for all proteins in supercharged states for all activation methods, particularly for HCD, 213 nm UVPD, and 193 nm UVPD. Even if large gains in sequence coverages were not apparent for the highest charge states, supercharging consistently led to at least a few new backbone cleavage sites for ETD, EThcD, 213 nm UVPD, and 193 nm UVPD for all proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.3c00138DOI Listing

Publication Analysis

Top Keywords

activation methods
16
213 uvpd
16
uvpd 193
16
193 uvpd
16
ethcd 213
12
sequence coverage
12
methods hcd
8
etd ethcd
8
uvpd
8
changes sequence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!