We developed a multichannel wireless quartz-crystal-microbalance (QCM) biosensor for mechanically studying the on-surface aggregation reaction of α-synuclein (α-syn). We find a quite unusual change in the resonant frequency that eventually exceeds the baseline, which has never been observed during seeding aggregation reaction. By incorporating a growth-to-percolation theory for fibril elongation reaction, we have favorably reproduced this unusual response and found that it can be explained only with formation of an ultrastiff fibril network. We also find that the stiffness of the fibril network grown from artificially prepared twist-type seeds is significantly higher than that from rod-type seeds. Furthermore, the stiffnesses of fibril networks grown from seeds derived from brain tissues of Parkinson's disease (PD) and multiple system atrophy (MSA) patients show a very similar trend to those of rod and twist seeds, respectively, indicating that fibrils from MSA patients are stiffer than those from PD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.3c00331DOI Listing

Publication Analysis

Top Keywords

aggregation reaction
8
fibril network
8
msa patients
8
ultrastiff amyloid-fibril
4
amyloid-fibril network
4
network α-synuclein
4
α-synuclein formed
4
formed surface
4
surface seeding
4
reaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!