Combining synthetic polymers with RNA paves the way for creating RNA-based materials with non-canonical functions. We have developed an acylation reagent that allows for direct incorporation of the atom transfer radical polymerization (ATRP) initiator into both short synthetic oligoribonucleotides and natural biomass RNA extracted from torula yeast. The acylation was performed in a quantitative yield. The resulting initiator-functionalized RNAs were used for grafting polymer chains from the RNA by photoinduced ATRP, resulting in RNA-polymer hybrids with narrow molecular weight distributions. The RNA initiator was used for the polymerization of oligo(ethylene oxide) methyl ether methacrylate, poly(ethylene glycol) dimethacrylate, and -isopropylacrylamide monomers, resulting in RNA bottlebrushes, hydrogels, and stimuli-responsive materials. This approach, readily applicable to both post-synthetic and nature-derived RNA, can be used to engineer the properties of a variety of RNA-based macromolecular hybrids and assemblies providing access to a wide variety of RNA-polymer hybrids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326879PMC
http://dx.doi.org/10.1021/jacs.3c03757DOI Listing

Publication Analysis

Top Keywords

rna-polymer hybrids
12
atrp initiator
8
rna
6
hybrids direct
4
direct site-selective
4
site-selective acylation
4
acylation atrp
4
initiator photoinduced
4
photoinduced polymerization
4
polymerization combining
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!