Cadmium (Cd) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) co-exposure induces acute kidney injury through oxidative stress and RIPK3-dependent necroptosis.

Environ Toxicol

Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China.

Published: October 2023

Environmental pollution is complex, and co-exposure can accurately reflect the true environmental conditions that are important for assessment of human health. Cadmium (Cd) is a widespread toxicant that can cause acute kidney injury (AKI), while its combined effect with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is not fully understood. Thus, we used an in vivo model where C57BL/6J mice were treated with low dietary intake of Cd (5 mg/kg/day) and/or BDE-47 (1 mg/kg/day) for 28 days to examine AKI, and in vitro experiments to investigate the possible mechanism. Results showed that Cd or BDE-47 caused pathological kidney damage, accompanied by elevated urea nitrogen (BUN) and urinary creatinine, as well as increased interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and reduced IL-10 in kidney tissues. In vitro Cd or BDE-47 exposure decreased cell viability and induced cell swelling and blebbing of human embryonic kidney 293 (HEK-293) and renal tubular epithelial cell lines (HKCs), and changes in co-exposure was larger than that in Cd and BDE-47 treatment. Oxidative stress indicators of the reactive oxygen species (ROS) and malondialdehyde (MDA) were elevated, while the antioxidant superoxide dismutase (SOD) was decreased. Necrosis occurred with increased lactate dehydrogenase (LDH) release and propidium iodide (PI) staining, which was attenuated by the ROS scavenger N-acetyl-L-cysteine (NAC). Furthermore, necroptotic genes of receptor-interacting protein kinase-3 (RIPK3), classical mixed lineage kinase domain-like protein-dependent (MLKL), IL-1β and TNF-α were up-regulated, whereas RIPK1 was down-regulated, which was attenuated by the RIPK3 inhibitor GSK872. These findings demonstrate that Cd or BDE-47 alone produces kidney toxicities, and co-exposure poses an additive effect, resulting in AKI via inducing oxidative stress and regulating RIPK3-dependent necroptosis, which offers a further mechanistic understanding for kidney damage, and the combined effect of environmental pollutants should be noticed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23869DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
22'44'-tetrabromodiphenyl ether
8
ether bde-47
8
acute kidney
8
kidney injury
8
ripk3-dependent necroptosis
8
kidney damage
8
bde-47
7
kidney
7
cadmium 22'44'-tetrabromodiphenyl
4

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!