Nanocrystalline Ti Cr O (0 ≤ x ≤ 0.20) samples were synthesised via acid-modified sol-gel process and characterised with various techniques, such as HRTEM, FESEM, Raman, XPS, DTA and VSM. The TEM image of TiO exhibits elongated nanoparticles with an average size of 10 nm. The HRTEM in combination with selected area electron diffraction (SAED) reveals the interplanar spacing and polycrystalline nature of the samples, respectively. FESEM micrographs divulge nonuniform morphologies and less aggregation of the particles in the doped sample. Raman spectra ensure the phase purity of the samples and a blue shift on Cr doping. X-ray photoelectron spectra (XPS) predict the chemical state of the elements and oxygen vacancies in the prepared samples. Room temperature magnetic measurements exhibit a significant variation in the magnetic parameters on Cr doping in TiO . The differential thermal analysis (DTA) shows the structural phase transition at ∼630°C. The photocatalytic performance is studied for the degradation of methylene blue (MB) dye under visible light irradiation. A higher photocatalytic efficiency is found for the 20% of Cr-doped TiO . These studies propose that the appropriate incorporation of Cr ions makes TiO very efficient for visible light-driven photocatalysts required for applications in wastewater treatment. LAY DESCRIPTION: In the present study, nanoparticles of TiO and Cr-doped TiO have been synthesised by a cost-effective acid-modified sol-gel process. The effect of Cr doping on the microstructure, thermal, magnetic and photocatalytic properties of TiO were explored in detail. The transmission electron microscopy (TEM) images exhibit the presence of elongated nanoparticles with an average size of 10 nm. Field emission scanning electron microscopy (FESEM) was used to study the surface morphology of the synthesised materials, which revealed nonuniform morphologies and less aggregation of the particles in the Cr-doped sample. Energy dispersive x-ray spectroscopy (EDS) confirms the elemental compositions with the appropriate stoichiometry of the elements. Raman spectra ensure the phase purity of the materials and also a blue shift with the incorporation of Cr ions in TiO . X-ray photoelectron spectra (XPS) predict the chemical state of the elements and oxygen vacancies in the prepared samples. The magnetic nature of all the synthesised samples was examined through the vibrating sample magnetometer (VSM) and revealed weak ferromagnetic behaviour of the samples. These results signify that the oxygen vacancies and defects play a crucial role in developing the ferromagnetic nature of oxide semiconductors. The differential thermal analysis (DTA) shows the structural phase transition at ∼630°C. The photocatalytic performance of the prepared samples was studied for the degradation of methylene blue (MB) dye under irradiation of visible light. A higher photocatalytic efficiency was found for the 20% of Cr-doped TiO . These studies propose that the appropriate incorporation of Cr ions makes TiO very efficient for visible light-driven photocatalysts required for applications in wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jmi.13211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!