Changes in atomic bonding configuration in carbon from sp to sp are known to exist in certain structural defects in diamond, such as twin boundaries, grain boundaries, and dislocations, which have a significant impact on many properties of diamond. In this work, the atomic structure of fivefold twinning in detonation synthesized ultra-dispersed diamonds is investigated using a combination of techniques, including spherical aberration-corrected high-resolution electron microscopy (HREM), HREM image simulations, and molecular mechanics (MM) calculations. The experimental HREM images reveal clearly that the fivefold twinning in diamond has two distinct structures. In addition to the concentric fivefold twins, where the core structure is the intersection of five {111} twinning boundaries, a new extended core structure with co-hybridization of bonding is identified and analyzed in fivefold twinning. The atomic structure forming these fivefold twinning boundaries and their respective core structures is proposed to involve both the tetrahedral sp and planar graphitic sp bonding configurations, in which a co-hybridized planar hexagon of carbon serves as a fundamental structural unit. The presence of this sp -bonded planar unit of hexagonal carbon rings in general grain boundaries is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202302914 | DOI Listing |
Nat Commun
October 2024
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China.
The twin boundaries and inherent lattice strain of five-fold twin (5-FT) structures offer a promising and innovative approach to tune nanocrystal configurations and properties, enriching nanomaterial performance. However, a comprehensive understanding of the nonclassical growth models governing 5-FT nanocrystals remains elusive, largely due to the constraints of their small thermodynamically stable size and complex twin configurations. Here, we conducted in situ investigations to elucidate the atomic-scale mechanisms driving size-dependent and twin configuration-related aggregation phenomena between 5-FT and other nanoparticles at the atomic scale.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2023
Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
The thermal transport properties of five-fold twinned (5FT) germanium-silicon (Ge-Si) heteronanowires (h-NWs) with varying cross-sectional areas, germanium (Ge) domain ratios and heterostructural patterns are investigated using homogeneous nonequilibrium molecular dynamics (HNEMD) simulations. The results demonstrate a distinctive behavior in the thermal conductivity () of 5FT-NWs, characterized by a "flipped" trend at a critical cross-sectional area. This behavior is attributed to the hydrodynamic phonon flow, arising from the normal three-phonon scattering process in the low-frequency region.
View Article and Find Full Text PDFSmall
October 2023
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3255, USA.
Changes in atomic bonding configuration in carbon from sp to sp are known to exist in certain structural defects in diamond, such as twin boundaries, grain boundaries, and dislocations, which have a significant impact on many properties of diamond. In this work, the atomic structure of fivefold twinning in detonation synthesized ultra-dispersed diamonds is investigated using a combination of techniques, including spherical aberration-corrected high-resolution electron microscopy (HREM), HREM image simulations, and molecular mechanics (MM) calculations. The experimental HREM images reveal clearly that the fivefold twinning in diamond has two distinct structures.
View Article and Find Full Text PDFAnal Chem
April 2023
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
Chiral nanoparticles are one of the research hotspots in the field of materials science, chemistry, and biology. Understanding and controlling the chirality of nanoparticles is one key step toward their use, but the origin of nanoparticles' chirality and its determinative factor are not well understood. In this work, we studied the chirality of gold nanoparticles (AuNPs) prepared through the conventional citrate reduction method.
View Article and Find Full Text PDFNanoscale
January 2023
College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
Hard template-directed growth methods present a compelling route for the synthesis of Ag nanostructures with precise size control. Meanwhile, soft template methods are effective and flexible for the synthesis of Ag nanostructures with various morphologies. However, the role of the soft template is ambiguous and obviously neglected in hard template-directed growth processes due to the strong confinement effect of the hard template, limiting the diversity of Ag nanostructures that can be obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!