Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Characterization of the optic nerve through measurement of optic nerve diameter (OND) and optic nerve sheath diameter (ONSD) using transorbital sonography (TOS) has proven to be a useful tool for the evaluation of intracranial pressure (ICP) and multiple neurological conditions. We describe a deep learning-based system for automatic characterization of the optic nerve from B-mode TOS images by automatic measurement of the OND and ONSD. In addition, we determine how the signal-to-noise ratio in two different areas of the image influences system performance.
Methods: A UNet was trained as the segmentation model. The training was performed on a multidevice, multicenter data set of 464 TOS images from 110 subjects. Fivefold cross-validation was performed, and the training process was repeated eight times. The final prediction was made as an ensemble of the predictions of the eight single models. Automatic OND and ONSD measurements were compared with the manual measurements taken by an expert with a graphical user interface that mimics a clinical setting.
Results: A Dice score of 0.719 ± 0.139 was obtained on the whole data set merging the test folds. Pearson's correlation was 0.69 for both OND and ONSD parameters. The signal-to-noise ratio was found to influence segmentation performance, but no clear correlation with diameter measurement performance was determined.
Conclusion: The developed system has a good correlation with manual measurements, proving that it is feasible to create a model capable of automatically analyzing TOS images from multiple devices. The promising results encourage further definition of a standard protocol for the automatization of the OND and ONSD measurement process using deep learning-based methods. The image data and the manual measurements used in this work will be available at 10.17632/kw8gvp8m8x.1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2023.05.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!