Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Since the origin of the C57BL/6 (B6) mouse strain, several phenotypically and genetically distinct B6 substrains have emerged. For example, C57BL/6J mice (B6J) display greater voluntary ethanol consumption and locomotor response to psychostimulants and differences in nucleus accumbens synaptic physiology relative to C57BL/6N (B6N) mice. A non-synonymous serine to phenylalanine point mutation (S968F) in the cytoplasmic FMR1-interacting protein 2 (Cyfip2) gene underlies both the differential locomotor response to cocaine and the accumbal physiology exhibited by these substrains. We examined whether Cyfip2 allelic variation underlies B6 substrain differences in other reward-related phenotypes, such as ethanol intake and wheel-running activity.
Methods: We compared voluntary ethanol consumption, wheel-running, and binge-like ethanol drinking in male and female B6J and B6NJ mice. When substrain differences were observed, additional experiments were performed in two novel mouse models in which the B6N Cyfip2 mutation was either introduced (S968F) into the B6J background or corrected (F968S) via CRISPR/Cas9 technology.
Results: B6J consumed significantly more ethanol than B6NJ and allelic variation in Cyfip2 contributed substantially to this substrain difference. In contrast, B6NJ displayed significantly more daily wheel-running than B6J, with Cyfip2 allelic variation playing only a minor role in this substrain difference. Lastly, no substrain differences were observed in binge-like ethanol drinking.
Conclusions: These results contribute to the characterization of behavior-genetic differences between B6 substrains, support previous work indicating that free-choice and binge-like ethanol drinking are dependent on partially distinct genetic networks, and identify a novel phenotypic difference between B6 substrains in wheel-running activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/acer.15137 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10749376 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!