Air medical and critical care providers encounter the extremes of being both in-hospital and out-of-hospital clinicians, work in unpredictable environments, and treat patients with the most significant injury patterns and diagnoses. These demands highlight the need to recognize unique mental challenges for those who work in the air medical environment and the process by which providers make decisions. Patients who present with a high-acuity/low-volume pathology generate particularly difficult situations with abundant opportunity for both celebrations of performance and learning from mistakes. There are times when the desired option of therapy is not available, the most appropriate destination is not feasible, or the crew is unable to address every aspect of patient care with resources that are immediately available. Although it is logical to make decisions based on anatomic and physiological knowledge, the absence of an actual answer does not necessitate the acceptance of consensus. Dogmalysis refers to the dissolution of authoritative tenets held as established opinion without adequate grounds. This article highlights the importance of dogmalysis, the value of honest scientific reflection, and the aggressive seeking of evidence-based answers as it pertains to the air medical environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.amj.2023.04.009 | DOI Listing |
Pharmaceutics
January 2025
College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.
View Article and Find Full Text PDFOuter membrane vesicles (OMVs) are double-layered structures of nanoscale lipids released by gram-negative bacteria. They have the same membrane composition and characteristics as primitive cells, which enables them to penetrate cells and tissues efficiently. These OMVs exhibit excellent membrane stability, immunogenicity, safety, and permeability (which makes it easier for them to penetrate into tumour tissue), making them suitable for developing cancer vaccines and drug delivery systems.
View Article and Find Full Text PDFPathogens
January 2025
Center for Advanced Molecular Detection, 59th Medical Wing/Science & Technology, Joint Base San Antonio, Lackland, TX 78236, USA.
Background: Respiratory viral infections are a major public health challenge and the most diagnosed medical condition, particularly for individuals living in close proximity, like military personnel. We compared the sensitivity and specificity of the Biomeme Franklin and Truelab RT-PCR thermocyclers to determine which platform is more sensitive and specific at detecting SARS-CoV-2 and influenza A and B viruses.
Methodology: RNA extracted from nasopharyngeal swabs of infected and uninfected individuals was tested on the Biomeme Franklin at Lackland and the Truelab at Wright Patterson Air Force bases.
Pathogens
December 2024
Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
Periprosthetic joint infections occur in 1-2% of all patients undergoing prosthetic joint surgeries. Although strong efforts have been made to reduce infection rates, conventional therapies like one- or two-stage revisions have failed to lower the infection rates. Cold atmospheric plasma (CAP) has shown promising results in reducing bacterial loads on surfaces.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland.
Biosensors are transforming point-of-care diagnostics by simplifying the detection process and enabling rapid, accurate testing. This study introduces a novel, reusable biosensor designed for direct viral RNA detection from unfiltered saliva, targeting SARS-CoV-2. Unlike conventional methods requiring filtration, our biosensor leverages a unique electrode design that prevents interference from saliva debris, allowing precise measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!