Biosolids and sewage effluent application to agricultural fields is becoming a win-win practice as both an economical waste management strategy and a source of nutrients and organic matter for plant growth. However, these organic wastes contain a variety of trace chemicals of environmental concern such as pharmaceuticals and personal care products (PPCPs), which may pose a risk to agricultural fields and ecosystems. This work aims to investigate the sorption of sitagliptin on four agricultural soils, evaluate the effects of biosolids and sewage effluent application, and elucidate the main sorption mechanism of the pharmaceutical on soils. The sorption study revealed that the sorption capacities of sitagliptin on different soils were positively related to the contents of soil organic matter and negatively associated with soil pH values. The application of biosolids and sewage effluent decreased the sorption capacity of sitagliptin, which may be attributed to the loading of dissolved organic matter derived from organic wastes. The Freundlich isotherm model demonstrated that the addition of biosolids from 0 to 100 % (W/W) consistently decreased the sorption affinity (K) of sitagliptin from 1.69 × 10 to 3.82 × 10 mg L kg. Sewage application at 0, 10, 50, and 100 % (V/V) also reduced the K values from 1.69 × 10 to 9.17 × 10 mg L kg. Attenuated Total Reflection (ATR)-Infrared (IR) spectroscopy analyses suggested that electrostatic interactions between carbonyl and amino groups of sitagliptin and the negatively charged soil surface are the main sorption mechanisms. In a co-solute system, the sorption affinity of sitagliptin on the soil decreased with increasing metformin concentrations, suggesting that competitive sorption may reduce the sorption capacity of individual contaminants in soil systems containing multiple PPCPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.165080 | DOI Listing |
ACS Omega
December 2024
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30309, United States.
Efforts addressing sludge management, food security, and resource recovery have led to novel approaches in these areas. Electrically assisted conversion of sludge stands out as a promising technology for sewage sludge valorization, producing nitrogen and phosphorus-based fertilizers. The adoption of this technology, which could lead to a fertilizer circular economy, holds the potential to catalyze a transformative change in wastewater treatment facilities toward process intensification, innovation, and sustainability.
View Article and Find Full Text PDFSci Total Environ
January 2025
UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia.
Anaerobic co-digestion is emerging as an option for wastewater biosolids management. Variations in treatment parameters can impact odour emissions and, in turn, odour nuisance reduces community acceptance and alternatives for beneficial reuse of biosolids via land application. This study assessed odour emissions from digested sludge and biosolids resulting from the anaerobic co-digestion of wastewater sludge with beverage rejects (beer and cola) and food wastes.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Chemistry and Biochemistry, Florida International University, 11960 SW 11th St, Miami, FL, 33199, USA.
Batch leaching experiments were conducted to evaluate the release of forty per- and polyfluoroalkyl substances (PFAS) from sludge samples collected after thickening, anaerobic digestion, and dewatering processes at two wastewater treatment plants. The South District wastewater treatment plant (SDWWTP), which receives domestic wastewater and landfill leachate from a nearby landfill, and the Central District wastewater treatment plant (CDWWTP), which receives only domestic wastewater, were selected for this study. PFAS released into the aqueous phase were analyzed by sacrificial sampling after 1, 3, 7, 14, and 30 days.
View Article and Find Full Text PDFSci Total Environ
December 2024
The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA. Electronic address:
Biosolids can provide a nutrient rich soil amendment, particularly for poor soils and semi-arid or drought-prone areas. However, there are concerns that sludge and biosolids could be a source of propagation and exposure to AMR determinants such as antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). To inform risk assessment efforts, a systematic literature review was performed to build a comprehensive spreadsheet database of ARB and ARG concentrations in biosolids (and some sludges specified as intended for land application), along with 69 other quantitative and qualitative meta-data fields from 68 published studies describing sampling information and processing methods that can be used for modeling purposes.
View Article and Find Full Text PDFAnnu Rev Anim Biosci
November 2024
2University of Nottingham, Loughborough, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!