Insulin enhances contextual fear memory independently of its effect in increasing plasma adrenaline.

Life Sci

Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal. Electronic address:

Published: September 2023

Aims: Adrenaline enhances contextual fear memory consolidation possibly by activating liver β-adrenoceptors causing transient hyperglycaemia. Contrastingly, insulin-induced hypoglycaemia may culminate in blood adrenaline increment, hidering the separation of each hormone's action in contextual fear memory. Therefore, an adrenaline-deficient mouse model was used aiming to investigate if contextual fear memory consolidation following insulin administration requires or not subsequent increases in plasma adrenaline, which occurs in response to insulin-induced hypoglycemia.

Main Methods: Fear conditioning was performed in wild-type (WT) and adrenaline-deficient (Pnmt-KO) male mice (129 × 1/SvJ) treated with insulin (2 U/kg, intraperitoneal (i.p.)) or vehicle (0.9 % NaCl (i.p.)). Blood glucose was quantified. Catecholamines were quantified using HPLC with electrochemical detection. Quantitative real-time polymerase chain reaction was used to assess mRNA expression of hippocampal Nr4a1, Nr4a2, Nr4a3, and Bdnf genes.

Key Findings: Insulin-treated WT mice showed increased freezing behaviour when compared to vehicle-treated WT mice. Also, plasma dopamine, noradrenaline, and adrenaline increased in this group. Insulin-treated Pnmt-KO animals showed increased freezing behaviour when compared with respective vehicle. However, no changes in plasma or tissue catecholamines were identified in insulin-treated Pnmt-KO mice when compared with respective vehicle. Furthermore, insulin-treated Pnmt-KO mice presented increased Bdnf mRNA expression when compared to vehicle-treated Pnmt-KO mice.

Significance: Concluding, enhanced freezing behaviour after insulin treatment, even in adrenaline absence, may indicate a key role of insulin in contextual fear memory. Insulin may cause central molecular changes promoting contextual fear memory formation and/or retrieval. This work may indicate a further role of insulin in the process of contextual fear memory modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2023.121881DOI Listing

Publication Analysis

Top Keywords

contextual fear
28
fear memory
28
freezing behaviour
12
insulin-treated pnmt-ko
12
enhances contextual
8
fear
8
plasma adrenaline
8
memory consolidation
8
mrna expression
8
increased freezing
8

Similar Publications

Memory is incorporated into the brain as physicochemical changes to engram cells. These are neuronal populations that form complex neuroanatomical circuits, are modified by experiences to store information, and allow for memory recall. At the molecular level, learning modifies synaptic communication to rewire engram circuits, a mechanism known as synaptic plasticity.

View Article and Find Full Text PDF

Exposure to extreme stress can negatively impact behavior and lead to prolonged fear sensitization. These processes can be studied in the lab using stress-enhanced fear learning (SEFL), where prior exposure to inescapable stress exacerbates later contextual fear conditioning. A common method to reduce conditional fear is through extinction, where a conditional stimulus once paired with an unconditional (US; e.

View Article and Find Full Text PDF

Alcohol binge drinking has a multitude of effects on CNS function, including changes in inflammatory cytokines such as IL-6 and IL-1β that may contribute to mood fluctuations associated with the intoxication-withdrawal cycle. Widely throughout the brain, including the amygdala, IL-6 mRNA is enhanced during intoxication, whereas IL-1β is initially suppressed during alcohol intoxication, with increased expression seen shortly after ethanol clearance, during acute hangover. Furthermore, induction of neuroimmune genes appears to be muted during adolescence in the amygdala, suggesting a broader functional immaturity of the adolescent neuroimmune system in structures involved in negative affect associated with ethanol exposure.

View Article and Find Full Text PDF

Chemicals in general often evoke negative emotions (e.g., worry or fear) in consumers.

View Article and Find Full Text PDF

Epigenetics in Learning and Memory.

Subcell Biochem

January 2025

Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.

In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!