Introduction: Historically, extensively drug-resistant tuberculosis has been notoriously difficult to treat with devasting outcomes. As we are coming to the end of an era where the 2006 extensively drug-resistant tuberculosis definitions and old treatment regimens are being replaced, we aimed to estimate the proportion of extensively drug-resistant tuberculosis patients globally who achieved successful treatment outcomes.
Methods: We conducted a systematic review of PubMed/MEDLINE, Scopus, Web of Science, and Embase from January 1, 2005, through April 3, 2023. Included studies reported WHO treatment outcomes, or adaptions hereof, for pre-extensively and/or extensively drug-resistant tuberculosis patients according to the 2006 WHO definition. Eligible studies included cohorts of at least 10 adults (aged>18 years) that were not pregnant. Using a random-effects model, we calculated pooled proportions of treatment outcomes and performed sensitivity and subgroup analyses. PROSPERO registration number: CRD42022340961.
Results: Among 5056 studies reviewed, we identified 94 studies from 26 countries, involving 10,223 extensively drug-resistant tuberculosis patients. The pooled proportion of successful treatment outcomes was 44.2% (95%CI: 38.3-50.3). Sensitivity analyses consistently produced similar estimates. A slight improvement in treatment outcomes was observed after 2013. Furthermore, 25 studies reported outcomes for 3564 individuals with pre-extensively drug-resistant tuberculosis, of which 63.3% achieved successful treatment (95%CI: 43.1-72.5).
Conclusion: Globally, the success rate of extensively drug-resistant tuberculosis treatment is 44.2%, far below the WHO's target rate of 75%. These results may serve as a reference for future studies assessing extensively drug-resistant tuberculosis treatment outcomes under the 2021 definition treated with better treatment regimens available. Comprehensive surveillance data of extensively drug-resistant tuberculosis outcomes from the whole world are desirable to monitor treatment progress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinf.2023.06.014 | DOI Listing |
Brief Bioinform
November 2024
Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Beijing 100020, China.
Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576 compounds extracted from the DrugBank database were screened against Mtb.
View Article and Find Full Text PDFTuberc Respir Dis (Seoul)
December 2024
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Background: Respiratory infection is a major cause of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We investigated the presence of bacterial and viral pathogens and clinical features in patients with AECOPD.
Methods: This retrospective study included 1,186 patients diagnosed with AECOPD from 28 hospitals in South Korea between 2015-2018.
Pol J Vet Sci
September 2024
Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
The material for drug resistance testing was 28 strains of Mycobacterium caprae isolated from tissue collected post mortem from a free-living Bieszczady Mountain European bison (Bison bonasus caucasicus) herd. All drug susceptibility tests were carried out on an automated Bactec mycobacterial growth indicator tube (MGIT) 960 system, using Bactec MGIT 960 streptomycin, isoniazid, rifampin and ethambutol (S.I.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong, Bogor, Indonesia.
Background/aim: Tuberculosis (TB) has become the world's deadliest disease. The lack of an effective therapeutic drug to treat it is one of the obstacle for doctors. Today, multidrug-resistant TB cases are increasing.
View Article and Find Full Text PDFChemMedChem
December 2024
NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, Balanagar, 500037, Hyderabad, INDIA.
The continued prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains, particularly against first-line antitubercular (anti-TB) drugs, presents an impending public health threat that necessitates the exploration and development of New Chemical Entities (NCEs). In search of new anti-TB leads, a library of ethyl 5-(1-benzyl-1H-indol-5-yl)isoxazole-3-carboxylates were generated through a strategy of scaffold hopping from the proven isoxazole-3-carboxylate-based anti-TB pharmacophore. We evaluated their antibacterial potential against a panel of pathogenic bacteria and MtbH37Rv strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!