Pirfenidone (PFND) is a recommended oral drug used to treat idiopathic pulmonary fibrosis, but have low bioavailability and high hepatotoxicity. The study, therefore, seeks to improve the therapeutic activities of the drug via increased bioavailability and reduced associated side effects by developing a novel drug delivery system. The electrostatic spray technology was used to prepare a sustained release pirfenidone-loaded microsphere dry powder inhalation with PEG-modified chitosan (PFND-mPEG-CS-MS). The entrapment efficiency, drug loading, and in vitro cumulative drug release rate (at 24 h and with a sustained release effect) of PFND-mPEG-CS-MS were 77.35±3.01%, 11.45±0.64%, and 90.4%, respectively. The Carr's index of PFND-mPEG-CS-MS powder was 17.074±2.163% with a theoretical mass median aerodynamic diameter (MMAD) of 0.99±0.07 μm, and a moisture absorption weight gain rate (R) of 4.61±0.72%. The emptying rate, pulmonary deposition rate (fine particle fraction) and actual mass median aerodynamic diameter (MMAD) were 90%∼95%, 48.72±7.04% and 3.10±0.16 μm, respectively. MTT bioassay showed that mPEG-CS-MS (200 μg/mL) had good biocompatibility (RGR = 90.25%) and PFND-mPEG-CS-MS (200 μg/mL) had significant inhibitory activity (RGR = 49.82%) on fibroblast growth. The pharmacokinetic data revealed that the t (5.02 h) and MRT (10.66 h) of PFND-mPEG-CS-MS were prolonged compared with the free PFND (t, 1.67 h; MRT, 2.71 h). The pharmacodynamic results also showed that the formulated-drug group had slight pathological changes, lower lung hydroxyproline content, and reduced hepatotoxicity compared with the free-drug group. The PFND-mPEG-CS-MS further significantly down-regulated TGF-β cytokines, Collagen I, and α-SMA protein expression levels compared with the free drug. The findings indicated that the PFND-mPEG-CS-MS had a good sustained release effect, enhanced bioavailability, decreased toxicity, and increased anti-fibrotic activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2023.106509 | DOI Listing |
ACS Nano
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:
The application of metal-organic frameworks (MOFs) has garnered significant attention in contemporary research. However, the impacts of MOFs on aquatic environments remain largely unclear. This study revealed that the water stability of ZIF-8 is influenced by its concentration, with lower concentrations resulting in higher percentages of Zn release.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
During the application of most conventional pesticides, a significant proportion is lost through rain wash-off and leaf rolling, leading to reduced actual utilization efficiency. In this paper, aminated dendritic mesoporous organosilicon nanoparticles (DMONs-NH) were synthesized via a one-pot method and used as carriers. Carbendazim (CBZ) was then encapsulated within DMONs-NH through hydrogen bonding and electrostatic interactions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea. Electronic address:
Limited aqueous solubility is a major hurdle resulting in poor and variable oral bioavailability, high doses, side effects, and the suboptimal therapeutic efficacy of sorafenib (SRF). In this study, we developed SRF-loaded solid lipid nanoparticles (SRF-SLNs) and lipid core-chitosan shell hybrid nanoparticles (CS-SRF-SLNs) to improve the oral absorption of SRF. SRF-SLNs were prepared using a stearyl alcohol core stabilized with a surfactant mixture, followed by surface decoration with chitosan to form CS-SRF-SLNs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran.
This study explores the development of a sustainable drug delivery system using cellulose nanoparticles (CNPs) derived from potato pulp for the controlled release of phosphoaminopyrazine (PAP), a promising anticancer agent. CNPs were synthesized via nanoprecipitation, and PAP was loaded through in-situ nanoprecipitation, achieving a high loading efficiency of 79.2 %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!