Mechanistic study of the increased phototoxicity of titanium dioxide nanoparticles to Chlorella vulgaris in the presence of NOM eco-corona.

Ecotoxicol Environ Saf

Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Quebec H9X 3V9, Canada. Electronic address:

Published: June 2023

Widespread applications and release of photoactive nanoparticles (NPs) such as titanium dioxide (TiO) into environmental matrices warrant mechanistic investigations addressing toxicity of NPs under environmentally relevant conditions. Accordingly, we investigated the effects of surface adsorbed natural organic matters (NOMs) such as humic acid, tannic acid and lignin on the band gap energy, abiotic reactive oxygen species (ROS) generation, surface chemistry and phototoxicity of TiO NPs. Initially, a liquid assisted grinding method was optimized to produce TiO NPs with a NOM layer of defined thickness for further analysis. Generally, adsorption of NOM reduced the band-gap energy of TiO NPs from 3.08 eV to 0.56 eV with humic acid, 1.92 eV with tannic acid and 2.48 eV with lignin. Light activated ROS generation by TiO NPs such as hydroxyl radicals, however, was reduced by 4, 2, 9 times in those coated with humic acid, tannic acid and lignin, respectively. This reduction in ROS despite decrease in band gap energy corroborated with the decreased surface oxygen vacancy (as revealed by X-ray Photoelectron Spectroscopy (XPS)) and quenching of ROS by surface adsorbed NOM. Despite the reduced ROS generation, the NOM-modified TiO NPs exhibited an increased phototoxicity to Chlorella vulgaris in comparison to pristine TiO NPs. Further analysis suggested that photoactivation of NOM modified TiO NPs releases toxic degradation products. Findings from our studies thus provide mechanistic insight into the ecotoxic potential of NOM-modified TiO NPs when exposed to light in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2023.115164DOI Listing

Publication Analysis

Top Keywords

tio nps
32
humic acid
12
tannic acid
12
ros generation
12
nps
10
tio
9
increased phototoxicity
8
titanium dioxide
8
chlorella vulgaris
8
surface adsorbed
8

Similar Publications

Background: In recent years, titanium dioxide (TiO) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals.

Methods: Therefore, we assessed the impact of TiO NPs (5 mg/L) on the marine bivalve, pearl oyster (), especially gill metabolism. Pearl oysters were exposed to seawater containing 5 mg/L TiO NPs for 14 days, followed by 7 days of recovery in untreated seawater.

View Article and Find Full Text PDF

Efficient Control of Head Blight and Reduction of Deoxynivalenol Accumulation by a Novel Nanopartner-Based Strategy.

Environ Sci Technol

December 2024

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.

View Article and Find Full Text PDF

Exposure to high temperatures during indoor and outdoor activities increases the risk of heat-related illness such as cramps, rashes, and heatstroke (HS). Fatal cases of HS are ten times more common than serious cardiac episodes in sporting scenarios, with untreated cases leading to mortality rates as high as 80%. Enhancing thermal comfort can be achieved through heat loss in enclosed spaces and the human body, utilizing heat transfer mechanisms such as radiation, conduction, convection, and evaporation, which do not require initial energy input.

View Article and Find Full Text PDF

This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO-NP synthesis to overcome the disadvantages of traditional approaches. TiO-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO NPs) are among the most prevalent nanomaterials utilized in industrial and medical fields. However, their impact on spermatogenesis and male fertility remains insufficiently characterized. This study addresses the reproductive toxicity of TiO NPs and elucidates the underlying molecular mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!