Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Ovarian cancer is a highly aggressive disease that is frequently diagnosed in advanced stages. Melatonin, with its numerous antitumor properties, holds great promise in cancer treatment. Herein, we investigated the effects of melatonin on apoptosis, cell migration, and kinase levels in human ovarian carcinoma SKOV-3 cells and determined whether these effects are mediated by the activation of the MT1 receptor.
Methods: SKOV-3 cells were exposed to different concentrations of melatonin based on the presence of MT1 receptor, and we also performed specific silencing of the melatonin receptor gene MTNR1A.
Results: Our findings revealed that melatonin reduced cell viability as shown by the MTT assay, and flow cytometry analysis showed increased rates of apoptosis and necrosis in all melatonin-treated cells. Melatonin significantly decreased the migratory and invasive capacities of the cells. Propidium iodide labeling indicated that melatonin induced cell cycle arrest by reducing DNA content in the S and G2/M phases in SKOV-3 cells. Additionally, the levels of AKT, ERK1/2, JNK, CREB, p70S6K, STAT3/5, and p38 MAP kinase involved in cell survival, proliferation, motility, and stress responses were depressed by melatonin and further reduced after MT1 knockdown. These molecules were found to be associated with lower overall survival in ovarian cancer patients.
Conclusions: Melatonin had obvious oncostatic actions on ovarian cancer cells, and MT1 receptor knockdown intensified its antitumor effect. The inhibition of the MT1 receptor resulted in a substantial reduction in the migratory and invasive capacities of the cells, suggesting its potential as a therapeutic target for the treatment of ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prp.2023.154637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!