DNA Methylation Analysis.

Methods Mol Biol

Division of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan.

Published: June 2023

AI Article Synopsis

  • DNA methylation plays a key role in regulating gene expression by silencing genes through the methylation of promoter CpG islands and can either increase or decrease expression when associated with enhancers.
  • Changes in DNA methylation patterns can offer insights into a variety of factors, including tissue origin, disease risk, patient response, and prognosis in both healthy and diseased cells.
  • The text outlines various techniques for analyzing DNA methylation, such as bisulfite conversion, BeadChip microarrays, next-generation sequencing, and region-specific methods like methylation-specific PCR and bisulfite sequencing.

Article Abstract

DNA methylation of promoter CpG islands silences their downstream genes, and enhancer methylation can be associated with decreased or increased gene expression. DNA methylation alterations in normal and diseased cells provide rich information, such as tissue origin, disease risk, patient response, and prognosis. DNA methylation status is detected by bisulfite conversion, which converts unmethylated cytosines into uracils but methylated cytosines very inefficiently. A genome-wide DNA methylation analysis is conducted by a BeadChip microarray or next-generation sequencing (NGS) of bisulfite-treated DNA. A region-specific DNA methylation analysis can be conducted by various methods, such as methylation-specific PCR (MSP), quantitative MSP, and bisulfite sequencing. This chapter provides protocols for bisulfite-mediated conversion, a BeadChip array-based method (Infinium), quantitative MSP, and bisulfite sequencing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3331-1_13DOI Listing

Publication Analysis

Top Keywords

dna methylation
24
methylation analysis
12
analysis conducted
8
quantitative msp
8
msp bisulfite
8
bisulfite sequencing
8
dna
7
methylation
6
analysis dna
4
methylation promoter
4

Similar Publications

Retraction Note: Comment on, "Differential DNA methylation associated with delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a systematic review".

Neurosurg Rev

January 2025

Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-77, Tamil Nadu, India.

View Article and Find Full Text PDF

Background: Aggressive Variant Prostate Cancers (AVPCs) are incurable malignancies. Platinum-based chemotherapies are used for the palliative treatment of AVPC. The Polycomb Repressive Complex 2 (PRC2) promotes prostate cancer progression histone H3 Lysine 27 tri-methylation (H3K27me3).

View Article and Find Full Text PDF

Clinicopathologic stratification demonstrates survival differences between endometrial carcinomas with mismatch repair deficiency and no specific molecular profile: a cohort study.

Int J Gynecol Cancer

January 2025

Helsinki University Hospital and University of Helsinki, Department of Obstetrics and Gynecology, Helsinki, Finland; University of Helsinki, Faculty of Medicine, Helsinki University Hospital and Research Program in Applied Tumor Genomics, Department of Pathology, Helsinki, Finland.

Objective: Endometrial carcinomas with mismatch repair deficiency (MMRd) and no specific molecular profile (NSMP) are considered to have intermediate prognoses. However, potential prognostic differences between these molecular subgroups remain unclear due to the lack of standardized control for clinicopathologic factors. This study aims to evaluate outcomes of MMRd and NSMP endometrial carcinomas across guideline-based clinicopathologic risk groups.

View Article and Find Full Text PDF

The epigenetic state of chromatin, gene activity and chromosomal positions are interrelated in plants. In Arabidopsis thaliana, chromosome arms are DNA-hypomethylated and enriched with the euchromatin-specific histone mark H3K4me3, while pericentromeric regions are DNA-hypermethylated and enriched with the heterochromatin-specific mark H3K9me2. We aimed to investigate how the chromosomal location affects epigenetic stability and gene expression by chromosome engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!