Synaptic density in aging mice measured by [F]SynVesT-1 PET.

Neuroimage

Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, SE-751 85 Uppsala, Sweden. Electronic address:

Published: August 2023

Synaptic alterations in certain brain structures are related to cognitive decline in neurodegeneration and in aging. Synaptic loss in many neurodegenerative diseases can be visualized by positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A). However, the use of SV2A PET for studying synaptic changes during aging is not particularly explored. Thus, in the present study, PET ligand [F]SynVesT-1, which binds to SV2A, was used to investigate synaptic density at different ages in healthy mice. Wild type C57BL/6 mice divided into three age groups (4-5 months (n = 7), 12-14 months (n = 11), 17-19 months (n = 7)) were PET scanned with [F]SynVesT-1. Brain retention of [F]SynVesT-1 expressed as the volume of distribution (V) was calculated using an image-derived input function. Estimates of V were derived using either a one-tissue compartment model (1TCM), a two-tissue compartment model (2TCM), or the Logan plot with blood input to find the best-fit model for [F]SynVesT-1. After the PET scans, tissue sections were immunostained for the detection of SV2A and neuronal markers. We found that [F]SynVesT-1 data acquired 60 min post intravenously injection and analyzed with 1TCM described the brain pharmacokinetics of the radioligand in mice well. [F]SynVesT-1 brain retention was lower in the oldest group of mice, indicating a decrease in synaptic density in this age group. However, no gradual age-dependent decrease in synaptic density at a region-specific level was observed. Immunostaining indicated that SV2A expression and neuron numbers were similar across all three age groups. In general, these data obtained in healthy aging mice are consistent with previous findings in humans where synaptic density appeared stable during aging up to a certain age, after which a small decrease is observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2023.120230DOI Listing

Publication Analysis

Top Keywords

synaptic density
20
synaptic
9
aging mice
8
[f]synvest-1 pet
8
three age
8
age groups
8
months n = 7
8
[f]synvest-1 brain
8
brain retention
8
compartment model
8

Similar Publications

Schizophrenia (SCZ) is a chronic psychotic disorder that profoundly alters an individual's perception of reality, resulting in abnormal behavior, cognitive deficits, thought distortions, and disorientation in emotions. Many complicated factors can lead to SCZ, and investigations are ongoing to understand the neurobiological underpinnings of this condition. Presynaptic Netrin G1 and its cognate partner postsynaptic Netrin-G-Ligand-1 (NGL-1) have been implicated in SCZ.

View Article and Find Full Text PDF

Tuning synapse strength by nanocolumn plasticity.

Trends Neurosci

January 2025

Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China. Electronic address:

The precise organization of the complex set of synaptic proteins at the nanometer scale is crucial for synaptic transmission. At the heart of this nanoscale architecture lies the nanocolumn. This aligns presynaptic neurotransmitter release with a high local density of postsynaptic receptor channels, thereby optimizing synaptic strength.

View Article and Find Full Text PDF

Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.

View Article and Find Full Text PDF

CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model.

CNS Neurosci Ther

January 2025

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.

View Article and Find Full Text PDF

Actin, a ubiquitous and highly conserved cytoskeletal protein, plays a pivotal role in various cellular functions such as structural support, facilitating cell motility, and contributing to the dynamic processes of synaptic function. Apart from its established role in inducing morphological changes, recent developments in the field indicate an active involvement of actin in modulating both the structure and function of pre- and postsynaptic terminals. Within the presynapse, it is involved in the organization and trafficking of synaptic vesicles, contributing to neurotransmitter release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!