Biological methanation of H and CO in trickle bed reactors is a promising energy conversion and storage approach that can support the energy transition towards a renewable-based system. Research in trickle bed reactor design and operation has significantly increased in recent years, but most studies were performed at laboratory scale and conditions. This review provides a comprehensive overview of the trickle bed reactor concept and current developments to support the decision-making process for future projects. In particular, the key design and operational parameters, such as trickling or nutrient provision, are presented, introducing the most recent advances. Furthermore, reactor operation, including the inoculation, long-term and dynamic operation, is described. To better assess the reactor upscaling, several parameters that enable reactor comparison are discussed. On the basis of this review, suitable operational strategies and further research needs were identified that will improve the overall trickle bed reactor performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129383 | DOI Listing |
RSC Adv
January 2025
Department of Chemistry, Chung-Ang University 84 Heukseok-ro, Dongjak-gu Seoul Republic of Korea
The C chemical species, potassium formate (K(HCO)), known as a two-electron reducing agent, finds application in the synthesis of multi-carbon compounds, including oxalate, and plays a crucial role not only in the food and pharmaceutical industries but also across various sectors. However, the direct hydrogenation of CO to produce K(HCO) remains a challenge. Addressing this issue, efficient production of K(HCO) is achieved by integrating CO hydrogenation in a trickle-bed reactor using a heterogeneous catalyst with a novel separation method that utilizes potassium ions from biomass ash for formic acid derivative product isolation.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
The use of mixed cultures in gas fermentations could reduce operating costs in the production of liquid chemicals such as alcohols or carboxylic acids. However, directing reducing equivalents towards the desired products presents the challenge of co-existing competing pathways. In this study, two trickle bed reactors were operated at acetogenic and chain elongating conditions to explore the fate of electron equivalents (ethanol, H, and CO) and test pH oscillations as a strategy to target chain-elongated products.
View Article and Find Full Text PDFChempluschem
December 2024
Ircelyon, UMR 5256, CNRS, Universite Claude Bernard Lyon 12, Avenue Albert Einstein, F-69626, Villeurbanne Cedex, Lyon, France.
For the first time, the catalytic oxidation of Kraft lignin over a solid heterogeneous catalyst was studied in a continuous lab-scale trickle-bed reactor. This catalytic process is able to depolymerize Kraft lignin and produce phenolic compounds of interest such as vanillin. The impact of operating conditions such as temperature, residence time, contact time, catalyst loading and lignin concentration was evaluated.
View Article and Find Full Text PDFFEMS Microbes
August 2024
Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria.
J Hazard Mater
December 2024
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!