To uncover how cells distinguish between misfolded and correctly-folded glycoproteins, homogeneous misfolded glycoproteins are needed as a probe for analysis of their structure and chemical characteristic nature. In this study, we have synthesized misfolded glycosyl interleukin-8 (IL-8) by combining E. coli expression and chemical synthesis to improve the synthetic efficiency. In order to prepare N-terminal peptide-thioester segment (1-33), we prepared an E. coli expressed peptide and then activated the C-terminal Cys by using an intramolecular N-to-S acyl shift reaction, followed by trans-thioesterification of the Cys-thioester with an external bis(2-sulfanylethyl)amine (SEA). The glycopeptide segment (34-49) was prepared by solid phase peptide synthesis and the C-terminal peptide (50-72) was prepared in E. coli. These peptide and glycopeptide segments were successfully coupled by sequential native chemical ligation. To obtain homogeneous misfolded glycoproteins by shuffling the disulfide bond pattern, folding conditions were optimized to maximize the yield of individual homogeneous misfolded glycoproteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2023.108847 | DOI Listing |
J Phys Chem Lett
December 2024
Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China.
Irisin, a fibronectin III protein secreted by muscles during physical exercise, plays a significant role in the browning of white fat and cell adhesion, highlighting the importance of its conformational transitions. In this study, we investigated the folding and unfolding dynamics of a single irisin domain using a single-molecule manipulation technique known as magnetic tweezers. In addition to the native state, irisin can also fold transiently into a misfolded state.
View Article and Find Full Text PDFPLoS One
November 2024
The Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America.
Prion diseases are transmissible, fatal neurologic diseases of mammals caused by the accumulation of mis-folded, disease associated prion protein (PrPd). Creutzfeldt-Jakob Disease (CJD) is the most common human prion disease and can occur by sporadic onset (sCJD) (~85% of CJD cases), genetic mutations in the prion protein gene (10-15%) or iatrogenic transmission (rare). PrPd is difficult to inactivate and many methods to reduce prion infectivity are dangerous, caustic, expensive, or impractical.
View Article and Find Full Text PDFActa Neuropathol
August 2024
Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform.
View Article and Find Full Text PDFNat Commun
August 2024
School of Biosciences, University of Birmingham, Birmingham, UK.
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons in the central nervous system (CNS). Mutations in the metalloenzyme SOD1 are associated with inherited forms of ALS and cause a toxic gain of function thought to be mediated by dimer destabilization and misfolding. SOD1 binds two Cu and two Zn ions in its homodimeric form.
View Article and Find Full Text PDFTransl Neurodegener
July 2024
Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
Background: Seed amplification assays (SAA) enable the amplification of pathological misfolded proteins, including α-synuclein (αSyn), in both tissue homogenates and body fluids of Parkinson's disease (PD) patients. SAA involves repeated cycles of shaking or sonication coupled with incubation periods. However, this amplification scheme has limitations in tracking protein propagation due to repeated fragmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!