Fused deposition modeling (FDM) 3D printing is a promising additive manufacturing technique to produce low-cost disposable electrochemical devices. However, the print of devices like well-known screen-printed electrodes (all electrodes on the same device) is difficult using the available technology (few materials available for production of working electrodes). In this paper we present a procedure to produce disposable and robust electrochemical devices by FDM 3D printing that allows reproducible analysis of small volumes (50-2000 μL). The device consists of just two printed parts that allow easy coupling of different conductive materials for using as disposable or non-disposable working electrodes with reproducible geometric area. Printed counter and pseudo-reference electrodes can also be easily fitted into the microcell. Moreover, conventional counter (platinum wire) and mini reference electrodes can also be used. As a proof of concept, paracetamol, cocaine and uric acid were used as model analytes using different materials as working electrodes. Linear calibration curves (r > 0.99) with similar slopes (0.29 ± 0.01 μA μmol L; RSD = 3.4%) were obtained by square wave voltammetry (SWV) using a complete printed system and different volumes of standard solutions of paracetamol (50, 100, and 200 μL). For uric acid, a linear range of 10-125 μmol L (r > 0.99), was obtained using differential pulse voltammetry as the electrochemical technique and a disposable laser-induced graphene base as the working electrode. With the coupling of boron-doped diamond working electrode, screening tests were successfully performed in seized cocaine samples with selective detection of cocaine in the presence of its most common adulterants. The production cost per unit of a complete electrochemical system is around US 5.00. In large-scale production, only the working electrode needs to be replaced while the microcell and counter/pseudo reference electrodes do not need to be discarded.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.124832DOI Listing

Publication Analysis

Top Keywords

working electrodes
12
working electrode
12
analysis small
8
small volumes
8
fdm printing
8
electrochemical devices
8
electrodes
8
production working
8
reference electrodes
8
uric acid
8

Similar Publications

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

Potassium-ion batteries (KIBs) have attracted significant attention in recent years as a result of the urgent necessity to develop sustainable, low-cost batteries based on non-critical raw materials that are competitive with market-available lithium-ion batteries. KIBs are excellent candidates, as they offer the possibility of providing high power and energy densities due to their faster K diffusion and very close reduction potential compared with Li/Li. However, research on KIBs is still in its infancy, and hence, more investigation is required both at the materials level and at the device level.

View Article and Find Full Text PDF

Study on Quantitative Adjustment of CD Bias and Profile Angle in the Wet Etching of Cu-Based Stacked Electrode.

Materials (Basel)

December 2024

Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China.

The electrodes of thin film transistors (TFTs) have evolved from conventional single Cu layers to multi-layered structures formed by Cu and other metals or alloys. Different etching rates of various metals and galvanic corrosion between distinct metals may cause etching defects such as rough or uneven cross-sectional surfaces of stacked electrodes. Therefore, the etching of stacked electrodes faces new challenges.

View Article and Find Full Text PDF

Due to its low cost, natural abundance, non-toxicity, and high theoretical capacitance, cobalt oxide (CoO) stands as a promising candidate electrode material for supercapacitors. In this study, binder-less molybdenum doped CoO (Mo@CoO) integrated electrodes were one-step fabricated using a simple electric discharge corrosion (EDC) method. This EDC method enables the direct synthesis of Mo@CoO active materials with oxygen vacancy on cobalt substrates, without any pre-made templates, conductive additives, or chemicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!