A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ISRES+: an improved evolutionary strategy for function minimization to estimate the free parameters of systems biology models. | LitMetric

ISRES+: an improved evolutionary strategy for function minimization to estimate the free parameters of systems biology models.

Bioinformatics

Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843, United States.

Published: July 2023

Motivation: Mathematical models in systems biology help generate hypotheses, guide experimental design, and infer the dynamics of gene regulatory networks. These models are characterized by phenomenological or mechanistic parameters, which are typically hard to measure. Therefore, efficient parameter estimation is central to model development. Global optimization techniques, such as evolutionary algorithms (EAs), are applied to estimate model parameters by inverse modeling, i.e. calibrating models by minimizing a function that evaluates a measure of the error between model predictions and experimental data. EAs estimate model parameters "fittest individuals" by generating a large population of individuals using strategies like recombination and mutation over multiple "generations." Typically, only a few individuals from each generation are used to create new individuals in the next generation. Improved Evolutionary Strategy by Stochastic Ranking (ISRES), proposed by Runnarson and Yao, is one such EA that is widely used in systems biology to estimate parameters. ISRES uses information at most from a pair of individuals in any generation to create a new population to minimize the error. In this article, we propose an efficient evolutionary strategy, ISRES+, which builds on ISRES by combining information from all individuals across the population and across all generations to develop a better understanding of the fitness landscape.

Results: ISRES+ uses the additional information generated by the algorithm during evolution to approximate the local neighborhood around the best-fit individual using linear least squares fits in one and two dimensions, enabling efficient parameter estimation. ISRES+ outperforms ISRES and results in fitter individuals with a tighter distribution over multiple runs, such that a typical run of ISRES+ estimates parameters with a higher goodness-of-fit compared with ISRES.

Availability And Implementation: Algorithm and implementation: Github-https://github.com/gtreeves/isres-plus-bandodkar-2022.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323169PMC
http://dx.doi.org/10.1093/bioinformatics/btad403DOI Listing

Publication Analysis

Top Keywords

evolutionary strategy
12
systems biology
12
individuals generation
12
improved evolutionary
8
efficient parameter
8
parameter estimation
8
estimate model
8
model parameters
8
generation create
8
parameters
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!