Cumulative physiological stress is associated with age-related changes to peripheral T lymphocyte subsets in healthy humans.

Immun Ageing

Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Services, Western Human Nutrition Research Center, Davis, CA, USA.

Published: June 2023

Background: Progressive age-associated change in frequencies and functional capacities of immune cells is known as immunosenescence. Despite data linking chronic environmental, physiological, and psychosocial stressors with accelerated aging, how stress contributes to immunosenesence is not well characterized.

Objective: To help delineate the contribution of cumulative physiological stress on immunosensence we assessed relationships between a composite measurement of cumulative physiological stress, reflecting the functioning of the hypothalamic-pituitary-adrenal axis, sympathetic nervous system, cardiovascular system, and metabolic processes, and lymphocyte changes typically affiliated with aging in a cohort of healthy volunteers ranging from 18 to 66 y.

Results: Physiological stress load positively correlated with subject age in the study cohort and was significantly higher in adults 50-66 y compared to adults 18-33 y and 34-49 y. Using physiological stress load, we identified a significant age-dependent association between stress load and frequencies of circulating regulatory T lymphocytes (Tregs). Frequencies were higher in younger participants, but only in participants exhibiting low physiological stress load. As stress load increased, frequencies of Tregs decreased in young participants but were unchanged with increasing stress load in middle and older age individuals. Follow-up analysis of stress load components indicated lower circulating DHEA-S and higher urinary norepinephrine as the primary contributors to the effects of total stress load on Tregs. In addition, we identified age-independent inverse associations between stress load and frequencies of naïve Tregs and naïve CD4 T cells and positive associations between stress load and frequencies of memory Tregs and memory CD4 T cells. These associations were primarily driven by stress load components waist circumference, systolic and diastolic blood pressure, CRP, and HbA1c. In summary, our study results suggest that, in younger people, physiological stress load may diminish regulatory T cell frequencies to levels seen in older persons. Furthermore, independent of age, stress load may contribute to contraction of the naïve Treg pool and accumulation of memory Treg cells.

Clinical Trial: Registered on ClincialTrials.gov (Identifier: NCT02367287).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288764PMC
http://dx.doi.org/10.1186/s12979-023-00357-5DOI Listing

Publication Analysis

Top Keywords

stress load
52
physiological stress
28
stress
17
load
13
cumulative physiological
12
load frequencies
12
load components
8
associations stress
8
cd4 cells
8
frequencies
7

Similar Publications

Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.

View Article and Find Full Text PDF

Allostatic Load as a Short-Term Prognostic and Predictive Marker.

Stress Health

February 2025

Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Villafranca del Castillo, Spain.

It would be highly valuable to possess a tool for evaluating disease progression and identifying patients at risk of experiencing a more severe clinical course and potentially worse outcomes. The concept of allostatic load, which represents the overall strain on the body from repeated stress responses, has been recognized as a precursor to the development of chronic illnesses. It functions as a cumulative measure of the body's capacity to adapt to stress.

View Article and Find Full Text PDF

Here we present an updated systematic review identifying studies published 2019-2024, since our prior systematic review in 2020, that examine the association between minority stress and a biological outcome among sexual and gender minority (SGM) people. Pubmed, Web of Science, and Embase were queried to identify studies that examined an association between minority stress (including prejudice events and conditions, anticipation of rejection and discrimination, concealment or disclosure of SGM identity(ies), internalized stigma, or structural stigma) and a biological health outcome among SGM people. Included studies were coded for methodological approaches, study population, minority stress measure, biological outcomes, count of overall analyses, and count of analyses where an association was detected.

View Article and Find Full Text PDF

The adoption of pultruded glass fibre-reinforced polymer (pGFRP) composites as a substitute for traditional wooden cross-arms in high transmission towers represents a relatively novel approach. These materials were selected for their high strength-to-weight ratio and lightweight properties. Despite various studies focusing on structures improvement, there still have a significant gap in understanding the deformation characteristics of full-scale cross-arms under actual operational loads.

View Article and Find Full Text PDF

On the mechanics of networked type II collagen: Experiments, constitutive modeling, and validation.

Acta Biomater

January 2025

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States; School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, Storrs, CT, United States. Electronic address:

In this study we investigate the mechanics of type II collagen fibrils, an essential structural component in many load-bearing tissues including cartilage. Although type II collagen plays a crucial role in maintaining tissue integrity, the stress-stretch and failure response of type II collagen fibrils in tension is not established in the current mechanics literature. To address this knowledge gap, we conducted tensile tests on isolated collagen networks from articular cartilage and established a validated constitutive model for type II collagen fibril.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!