Mycoplasma genitalium (M. genitalium) has evolved as a superbug, and the developing antimicrobial resistance with just a few treatment options available is an imminent concern. Due to the emergence of antibiotic resistance, a new antibiotic class or medications are required to combat this pathogen. The phosphate acetyltransferase (PTA) enzyme can be a suitable drug target which is essential for M. genitalium survival and involves in acetate metabolism. To efficiently find potent inhibitors, structure-based drug design approaches targeting the PTA of M. genitalium have been established. In this study, the three most potent phytochemical inhibitors were predicted from virtual screening and these are sitostanyl ferulate, beta-sitosterol-beta-D-glucoside, and brassinolide, with binding energies of - 9.66, - 9.60, and - 9.48 kcal/mol, respectively. The active site residues Thr-125, Arg-300, Ser-299, Tyr-272, and Lys-273 appear to be critical in binding the three predicted potent inhibitors. The results of the molecular dynamics study indicate that the three predicted phytochemical inhibitors have formed stable bonds with PTA. Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) was utilized for the estimation of binding free energy of PTA-phytochemical complexes. Taken together, the findings of our computational work might aid in the development of possible potential drugs to treat and ameliorate the severity of M. genitalium infection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-023-10681-zDOI Listing

Publication Analysis

Top Keywords

phytochemical inhibitors
12
phosphate acetyltransferase
8
mycoplasma genitalium
8
virtual screening
8
molecular dynamics
8
three predicted
8
genitalium
6
identification phytochemical
4
inhibitors
4
inhibitors targeting
4

Similar Publications

Withania somnifera-derived phytochemicals as Bcl-B inhibitors in cancer therapy: A computational approach from byte to bench to bedside.

Biochem Biophys Res Commun

January 2025

Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India. Electronic address:

Cancer is the second foremost cause of fatalities associated with non-communicable diseases across the globe, affecting multiple organs and often necessitating costly treatments with adverse side effects. Apoptosis, the body's natural cell death process, plays a crucial role in the prevention of cancer, but it's often disrupted in cancer cells, allowing uncontrolled proliferation. Restoring apoptosis in cancer cells is one of the promising therapeutic strategies to curb tumor growth and enhance clinical outcomes.

View Article and Find Full Text PDF

Background: Larsucosterol is a DNA methyltransferase inhibitor in development for alcohol-associated hepatitis (AH), a disease for which there is no approved therapy.

Methods: In this phase 2b trial, patients with severe AH were randomly assigned 1:1:1 to receive 30 mg or 90 mg of larsucosterol or placebo; a second dose was administered after 72 hours if the patient remained hospitalized. All patients received supportive care as determined by investigators.

View Article and Find Full Text PDF

Unlabelled: Breast cancer remains a global health challenge, with rising cases predicted in the coming decades. The complexity of breast cancer treatment arises from its complex nature, often involving multiple therapeutic strategies. One promising approach is targeting the ERK5 pathway, a key regulator in cancer cell proliferation and survival.

View Article and Find Full Text PDF

One of the successful techniques developed for the inhibition of metal corrosion is the utilization of phytochemicals from plant extracts as corrosion inhibitors. Theoretical studies are utilized to predict how organic components behave on metal surfaces and can pave the way for the development and synthesis of innovative, efficient corrosion inhibitors. However, atomic-level insights into the inhibition mechanisms of these green components are still needed.

View Article and Find Full Text PDF

Uncovering the naturally occurring covalent inhibitors of SARS-CoV-2 M from the Chinese medicine sappanwood and deciphering their synergistic anti-M effects.

J Ethnopharmacol

January 2025

Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014. Electronic address:

Ethnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!