Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is well known that induction motors consume active and reactive energy from the utility grid to operate; additionally, when a power converter drives the motor, a high content of current harmonics is produced, and both circumstances decrease the utility grid power factor, which later requires to be improved. To this end, this paper presents a novel complete solution through a robust control system employed in a back-to-back topology power converter to deliver, instead of consuming, regulated reactive power toward the main grid, which comes from a capacitor bank in a DC-bus. This salient feature of delivering reactive power, and simultaneously, regulating the speed for an induction motor, becomes one of the contributions of this work to enhance the power factor. The robust converter controller is synthesized in a cascade form, by applying the linearization block control and state-feedback techniques. These techniques are combined with the super-twisting strategy for canceling the nonlinearities and the effect of the external disturbances. The complete system consists of a back-to-back converter, an LCL filter coupled to the main grid for mitigating the current harmonic content, and an induction motor under variable load conditions. Experimental tests expose the performance and robustness of the proposed controller, where a robust control for the reactive power acts under sudden changes in the active power produced through abrupt variations in the motor load.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2023.06.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!