Background: Brain tumors are a heterogeneous group of malignancies characterized by inter- and intratumoral heterogeneity. Among them, the most aggressive and, despite advances in medicine, still incurable remains glioblastoma. One of the reasons is the high recurrence rate of the disease and resistance to temozolomide, a golden standard in chemotherapy of brain tumors. Therefore, mapping the pathways responsible for tumorigenesis at the transcriptional level may help to determine the causes and aggressive behavior among different glial tumors.
Patients And Methods: Biopsies from patients with astrocytoma (N = 6), glioblastoma (N = 22), and meningioma (N = 14) were included in the sample set. A control group consisted of RNA isolated from healthy human brain (N = 3). The reverse-transcribed cDNAs were analyzed using the Human Cancer PathwayFinder™ real-time PCR Array in a 96-well format. The expression of 84 genes belonging to 9 signaling pathways (angiogenesis, apoptosis, cell cycle and senescence, DNA damage and repair, epithelial-to-mesenchymal transition, hypoxia, overall metabolism, and telomere dynamics) was determined for each sample.
Results: By determining the relative expression of selected genes, we characterized the transcriptomic profile of individual brain malignancies in the context of signaling pathways involved in tumorigenesis. We observed deregulation in 50, 52.4 and 53.6% % of the genes in glioblastomas, meningiomas and astrocytomas, respectively. The most pronounced changes with statistical significance compared to control were observed in the genes associated with epithelial-to-mesenchymal transition (CDH2, FOXC2, GSC, SNAI2, and SOX10), cellular senescence (BMI1, ETS2, MAP2K1, and SOD1), DNA repair (DDB2, ERCC3, GADD45G, and LIG4), and dynamic of telomeres (TEP1, TERF2IP, TNKS, and TNKS2).
Conclusion: Based on the obtained data, we can conclude that individual diagnoses differ in transcriptomic profile. An individual molecular approach is therefore necessary in order to provide comprehensive and targeted therapy on multiple metabolic pathways in the diagnosis of brain tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.48095/ccko2023224 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.
View Article and Find Full Text PDFFam Cancer
January 2025
Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
Purpose: This study aimed to identify prognostic factors and develop a nomogram for survival in patients with brainstem ependymoma.
Methods: Data of 652 patients diagnosed with brainstem ependymoma extracted from the Surveillance, Epidemiology, and End Results (SEER) registry from 2000 to 2020 were analyzed. Univariate and multivariable Cox regression analyses were performed to examine factors influencing overall survival (OS).
J Exp Clin Cancer Res
January 2025
Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
Background: Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!