Are CAR T cells the answer to myasthenia gravis therapy?

Lancet Neurol

Neuroscience Clinical Research Center, Center for Stroke Research Berlin, and Department of Neurology with Experimental Neurology, Charité Universitaetsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany. Electronic address:

Published: July 2023

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1474-4422(23)00211-9DOI Listing

Publication Analysis

Top Keywords

car cells
4
cells answer
4
answer myasthenia
4
myasthenia gravis
4
gravis therapy?
4
car
1
answer
1
myasthenia
1
gravis
1
therapy?
1

Similar Publications

Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma.

Blood Rev

January 2025

Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China. Electronic address:

Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined.

View Article and Find Full Text PDF

A rapidly growing number of chimeric antigen receptors (CARs) is being translated into cell therapy for malignant and autoimmune diseases. While cancer cell-selective CAR targeting is undergoing continuous refinement, specific testing for overlooked recognition of healthy tissues is commonly not performed, which potentially results in underestimating of the risk of severe tissue damage upon CAR T cell application. Using the FcμR/IgM receptor/FAIM3/TOSO-specific CAR, designed to target chronic lymphocytic leukemia cells, we exemplarily outline a screen to uncover reactivities to healthy tissues and discuss the value of such pre-clinical testing to improve safety in CAR T cell application.

View Article and Find Full Text PDF

PD1-TLR10 fusion protein enhances the antitumor efficacy of CAR-T cells in colon cancer.

Int Immunopharmacol

January 2025

TriArm Therapeutics, Niudun Road 200, 201203 Shanghai, China. Electronic address:

Background: The immunosuppressive microenvironment negatively affects the efficacy of chimeric antigen receptor T (CAR-T) cells in solid tumors. Fusion protein that combining extracellular domain of inhibitory checkpoint protein and the cytoplasmic domain of stimulatory molecule may improve the efficacy of CAR-T cells by reversing the suppressive signals.

Methods: To generate optimal PD1-TLR10 fusion proteins, PD1 extracellular domain and TLR10 intracellular domain were connected by transmembrane domain from PD1, CD28, or TLR10, respectively.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic, autoimmune inflammatory disease with a multisystem manifestation and a variety of clinical symptoms. Over the last decades, the prognosis and life expectancy of patients with SLE improved significantly due to the implementation of corticosteroids combined with immunosuppressive agents. Nevertheless, the use of these medications is often associated with the occurrence of serious side effects and additional deterioration of organ function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!