Understanding the effects of climate change is one of the most challenging goals for biodiversity conservation. The forests of Andalusia, in Southern Spain, are part of an important Mediterranean Basin biodiversity hotspot. However, great changes in climate are expected to occur in this region, and there is an increasing need to assess the vulnerability of its vegetation. We assess the vulnerability of twelve forest types in the region that are included in the European Directive 92/43/EEC as Habitats of Community Interest (HCI). HCI are natural habitat types which are in danger, have a small natural range, or present an outstanding example of a biogeographical regions in the European Union. We assessed vulnerability by analyzing the climate exposure level of each forest type under two global climate models (MRI-CGCM3, which predicts warmer and wetter conditions, and MIROC-ESM which predicts hotter and drier conditions), two emission scenarios (RCP4.5, a representative concentration pathway that predicts stable emissions of CO, and RCP8.5, that predicts the highest CO emissions) by the mid- and end-century time periods. The vulnerability analysis also includes the sensitivity and adaptive capacity of the dominant tree species which compose each forest type. An overall vulnerability score was calculated for each forest type, model, scenario and time period. High-elevation forest types and those with high moisture requirements were more vulnerable to climate change, while forest types dominated by more thermophilic species were less vulnerable and more resilient. The worst climate impacts were predicted in the MIROC-ESM model and RCP8.5 scenario by the end of the century (2070-2100), while the least climatic stress was obtained in the MRI-CGCM3 model and RCP4.5 scenario by the mid-century (2040-2070), which still shows high potential stress for most forest types. By the end of the century, the climate exposure of the entire forest domain will range between 32 % in the least stressful situation (MRI-CGCM3 and RCP4.5), and 98 % in the most climatically stressful situation (MIROC-ESM and RCP8.5). However, the effects of climate change will be perceptible by the mid-century, with most of the HCI forest types suffering climate stress. The "Andalusian oak forest" and the "Corylus wet forest" types were the most vulnerable to climate change, while the "Mediterranean pine forest", the "Olea and Ceratonia forests" and the "oak forests" were the least vulnerable. This assessment identifies the vulnerable forest types to climate change in the south of the Iberian Peninsula, and provides context for natural resource managers in making decisions about how to adapt forests to the impacts of climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.164983 | DOI Listing |
Nanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Fisheries, University of Rajshahi, Rajshahi, 6205, Bangladesh.
The lesser spiny eel, Macrognathus aculeatus (Bloch, 1786), holds substantial economic importance as a food fish in South Asia, due to its exceptional nutritional value. This study was conducted to investigate the reproductive ecology of M. aculeatus within the Gajner beel wetland ecosystem in northwestern Bangladesh, with a specific focus on size at sexual maturity, spawning season, and fecundity in relation to eco-climatic variables.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic Technological University, Sligo, F91 YW50, Ireland.
Climate change has become an emerging topic, leading to widespread damage. However, when considering climate, attention is drawn to various scales, and urban microclimate has emerged as a trending subject due to its direct relevance to human living environments. Among the microclimatic factors, temperature and precipitation are utilized in order to identify trends.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Hydrobiology, Division of Biological and Health Sciences, Ecotoxicology Laboratory, Universidad Autónoma Metropolitana, Iztapalapa Unit, Mexico City C. P. 09340, Mexico.
Sea anemones play a crucial role in marine ecosystems. Recent studies have highlighted their physiological and ecological responses to thermal stress. Therefore, our objective was to perform a proteomic analysis of sea anemones in the Gulf of Mexico, subjected to thermal stress, to understand whether these organisms activate specific processes to resist increased temperature.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.
Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!