Analysis of natural photocatalysts derived from spartina alterniflora with superior removal performance of pollutant.

Environ Pollut

Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, 316022, China. Electronic address:

Published: September 2023

Spartina alterniflora, as an invasive alien species, has been studied in terms of its potential use in immobilization and synergistic photocatalysis against dye contaminants for the first time. Microscopic characterization and Fourier transform infrared (FTIR) spectroscopy results confirmed the presence of abundant 3D wormhole-like pore structures and active functional groups (-OH, -NH, CO, Si-O-Si). Moreover, the existence of SiO was connected the metal oxides with polar groups, which could proceed entire reaction procedure subsequently. Transition metal oxides (such as FeO, TiO, MnO and NiO) contained in photocatalysts might effectively promote the organics decomposition by the visible light excitation. The highest dye removal efficiency of 92.03% could be reached with the addition of 0.02 g photocatalyst. The capture experiment confirmed that the h was the dominant active substance during the photocatalytic degradation process. Density functional theory (DFT) calculations verified that the functional groups (-COOH, -OH and -NH) were exceptional adsorption sites for catalyst, and the calculated adsorption energy were all negative with the order of SRHH-NH (-2.712688 eV) < SRHH-OH (-2.075601 eV) < SRHH-COOH (-1.283141 eV), which confirmed that interface interaction effectively bound cationic dyes through the formation of hydrogen bonds at the catalysts-water interface, further accelerating the reaction rate of the entire photocatalytic reduction of dye molecules. Therefore, this work provides a feasible synthesis of natural photocatalysts using solid waste, which suggests excellent adsorption and photocatalysis properties for the treatment of organic industrial pollutant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.122096DOI Listing

Publication Analysis

Top Keywords

spartina alterniflora
8
functional groups
8
-oh -nh
8
metal oxides
8
analysis natural
4
natural photocatalysts
4
photocatalysts derived
4
derived spartina
4
alterniflora superior
4
superior removal
4

Similar Publications

Photic versus aphotic production of organohalogens from native versus invasive wetland plants-derived dissolved organic matter.

Water Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai 200241, China. Electronic address:

Article Synopsis
  • The study explores the less understood process of natural organohalogen formation in dark conditions (aphotic) compared to more well-known light-driven (photochemical) processes, particularly focusing on two types of dissolved organic matter (DOM) from wetland plants.
  • It finds that the invasive plant Spartina alterniflora (SA-DOM) is more prone to photochemical halogenation due to its higher aromatic content, while Phragmites australis (PA-DOM) produces more natural organohalogens (NOHs) during dark reactions.
  • The research highlights the importance of dissolved oxygen levels and suggests that both photochemical and aphotic pathways contribute significantly to NOH formation, making them relevant under varying environmental conditions.
View Article and Find Full Text PDF

Draft genome sequence of sp. SA01 isolated from seedlings collected in Cape Cod (USA).

Microbiol Resour Announc

January 2025

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.

A draft genome was generated for a strain of closely related to sp. ENV421 isolated from plants of smooth cordgrass germinated from seeds collected in a salt marsh in Cape Cod (USA). Genomic DNA was sequenced using paired-end Illumina technologies.

View Article and Find Full Text PDF

Assessment of macrobenthos in evaluating the restoration effects of artificial mangrove planting on tidal flats in Zhejiang, China.

Mar Environ Res

December 2024

Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou, 310012, China. Electronic address:

Artificially planted mangroves are widely used for tidal flat restoration, but their effectiveness in restoring these ecosystems remains unclear. Macrobenthos, as key indicators of tidal flat ecosystem health, can reflect changes in environmental conditions and quality resulting from the introduction of artificial mangroves. This study aimed to investigate the ecological restoration effects of artificially planted mangroves in northern China by surveying macrobenthic communities across four regions in June 2023.

View Article and Find Full Text PDF

Invasive alien plants pose a great threat to local plants and ecosystems. How to effectively alleviate this hazard is an unresolved issue. This study explored the carbon release characteristics of an invasive plant Spartina alterniflora and evaluated the ability of nitrogen removal from shrimp culture wastewater through constructing seawater wetland.

View Article and Find Full Text PDF

Biochar has been proposed as an effective material for mitigating greenhouse gas emissions from farmlands, but comparable information for earthen aquaculture ponds is limited. A field study was conducted to investigate the effects of adding biochar (200-1600 kg ha) derived from the invasive plant Spartina alterniflora on sediment physico-chemical properties, CH production potential (P), and the relevant functional gene abundances in earthen aquaculture ponds during the non-farming period. The results indicated that biochar treatments increased sediment porosity and salinity, while decreasing dissolved organic carbon and microbial biomass carbon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!