Objectives: The location of the aneurysm can affect the relationship between changes in intraoperative neurophysiological monitoring indicators and postoperative outcomes. The current study aimed to evaluate the application value of motor evoked potential and somatosensory evoked potential monitoring in anterior cerebral artery aneurysm surgery.
Methods: The data of 219 patients with anterior cerebral artery aneurysms treated via surgical clipping were retrospectively reviewed. The correlation of motor/somatosensory evoked potential monitoring with postoperative motor dysfunction was assessed using false positive rate, false negative rate, sensitivity, and specificity. Binary multivariate logistic regression analysis was applied to identify potential predictors for postoperative motor dysfunction.
Results: Motor evoked potential monitoring showed satisfactory effectiveness in predicting postoperative motor dysfunction (Sensitivity, 60.00%; Specificity, 85.43%; False positive rate, 14.57%; False negative rate, 40%). While somatosensory evoked potential did not (Sensitivity, 15.00%; Specificity, 96.98%; False positive rate, 3.02%; False negative rate, 85%). Abnormal motor evoked potential was identified as the only independent predictor for both short-term (odds ratio, 8.893; 95% confidence interval, 2.749-28.773; p<0.001) and long-term postoperative motor dysfunction (odds ratio, 7.877; 95% confidence interval, 2.144-28.945; p=0.002).
Conclusions: During intraoperative neurophysiological monitoring for patients with anterior cerebral artery aneurysms, paying more attention to motor evoked potential changes was a reasonable choice. And somatosensory evoked potential monitoring can serve as an auxiliary reference.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2023.107214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!