Recombinase polymerase amplification (RPA) is one of the most promising diagnostic methods for pathogen detection, owing to the simplified isothermal amplification technique. Using one-step digital reverse transcription RPA (dRT-RPA) to detect viral RNA provides a fast diagnosis and absolute quantification. Here, we present a chip that purifies, digitalizes, and detects viral RNA of SARS-CoV-2 in a fully automated and sensitive manner. The chip purifies the RNA using the surface charge concept of magnet bead-RNA binding, then mixes the RNA with the amplification reagents, digitalizes the amplification mixture, and performs dRT-RPA. RNA-bead complex is transported among purification buffers that are separated by an oil phase. For reagent manipulation and mixing, a magnetic valve system is integrated on the chip, where an external magnet controls the reagent direction and time of addition. Besides, a novel vacuum system is suggested to drive and regulate the reagents into two fluid systems simultaneously in ∼2 min. We also developed a cost-effective way to perform fluorescent detection for dRT-RPA on chip by using EvaGreen® dye. With integrated heating and optical detection system, the on-chip dRT-RPA presents a sample-to-answer detection platform for absolute viral RNA quantitation in 37 min and a sensitivity as low as 10 RNA copies/μL. Hence, this platform is expected to be a useful tool for accurate and automated diagnosis of infectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115487DOI Listing

Publication Analysis

Top Keywords

viral rna
12
digital reverse
8
reverse transcription
8
recombinase polymerase
8
polymerase amplification
8
chip purifies
8
rna
6
detection
5
amplification
5
drt-rpa
5

Similar Publications

Nasopharyngeal carcinoma (NPC) refers to a cancerous tumor that develops in the upper and side walls of the nasopharyngeal cavity. Typically, individuals are often diagnosed with the disease when it has already progressed significantly, and those with advanced NPC tend to have an unfavorable outlook in terms of response rate to targeted treatments and overall clinical survival. Various molecular mechanisms, including Myeloid-derived suppressor cells and factors like PD-L1, have been explored to enhance the outcome of NPC.

View Article and Find Full Text PDF

Newcastle disease virus (NDV) is an ideal model for exploring the mechanisms of the virus; it is also an optimal vector for developing vector vaccines and for cancer therapy. A reverse genetic system of NDV Mukteswar strain controlled by eukaryotic cellular RNA polymerase II promoter was established by reverse genetics technology. Based on the reverse genetic system, an open reading frame of the enhanced green fluorescent protein (EGFP) gene be inserted between the P and M genes of the viral genome and flanked with the gene start (GS) sequence and gene end (GE) sequence to form an independent transcription unit.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is characterized by a prolonged autoimmune attack resulting in the massive loss of insulin-producing beta cells. The initiation and progression of T1D depends on a complex interaction between genetic, immunological and environmental factors. Epidemiological, experimental and clinical evidence suggest a link between viral infections, particularly Coxsackievirus type B (CVB), and T1D development.

View Article and Find Full Text PDF

Infection of an adult rhesus macaque with SARS-CoV-2 led to viral RNAemia in nose, throat, and lungs. The animal also presented extended fecal shedding of viral genomic and subgenomic messenger RNA and replication-competent virus for more than 3 weeks after infection. Positron emission tomography revealed increased intestinal glucose metabolism which was histologically related to inflammation of the ileum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!