The frequent occurrence of epidemics around the world gives rise to increasing concerns of the pollution of pathogens and antibiotic resistant bacteria in water. This study investigated the impacts of virulence factors (VFs) on the removal of antibiotic resistant and pathogenic bacteria from municipal wastewater by ozone-free or ozone-encapsulated Fe(III)-coagulant-modified colloidal microbubbles (O_free-CCMBs or O-CCMBs). The highly interface-dependent process was initiated with cell-capture on the microbubble surface where the as-collected cells could be further inactivated with the bubble-released ozone and oxidative species if O-CCMBs were used. The microbiome sequencing analyses denote that the O_free-CCMB performance of antibiotic resistant and pathogenic bacteria removal was dependent on the virulence phenotypes related to cell-surface properties or structures. The adhesion-related VFs facilitated the effective attachment between cells and the coagulant-modified bubble-surface, which further enhanced cell inactivation by bubble-released ozone. On the contrary, the motility-related VFs might help cells to escape from the bubble capture by locomotion; however, this could be overcome by O-CCMB-induced oxidative demolition of the movement structures. Besides, the microbubble performance was also impacted with the cell-membrane structure related to antibiotic resistance (i.e., efflux pumps) and the dissolved organic matter through promoting the surface-capture and decreasing the oxidation efficacy. The ozone-encapsulated microbubbles with surface functionalization are robust and promising tools in hampering antibiotic resistance and pathogenicity dissemination from wastewater to surface water environment; and awareness should be raised for the influence of virulence signatures on its performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120224 | DOI Listing |
Microbiol Spectr
January 2025
Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada.
Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
High-quality draft genomes of six subspecies strains from Cambodian poultry marketplaces were sequenced. The strains were identified as Corvallis-, Monschaui-, and Kentucky-serovars. The fluoroquinolone resistance gene, was found in three strains in different Cambodian provinces.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFmSphere
January 2025
Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Treatment with antibiotics is a major risk factor for infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to growth and competition between the microbiota and for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to infection in 12 different microbial communities cultivated from healthy individuals.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
is a vital zoonotic pathogen known for its extensive drug resistance and ability to form biofilms, which contribute to its antibiotic resistance. In this study, the phage vB_C4, specifically targeting , was isolated and subjected to bioinformatic analysis and bacteriostatic activity assays. The combination of phage vB_C4 with antibiotics such as cephalothin and cefoxitin, which target the bacterial cell wall, resulted in a significantly enhanced bacteriostatic effect compared to either the phage or antibiotics alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!