Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The sliding of liquid drops over solid surfaces is a common phenomenon in nature and crucial in a variety of technological applications. Frictional dissipation along the contact line and viscous dissipation has long been regarded to dominate drop sliding. However, the ubiquitous solid-liquid interface charge transfer has received little attention. In this study, we systematically investigated the interfacial charge transfer between water drops and polarized poly(vinylidene fluoride) (ferroelectric insulator) surfaces and the effects of surface charge on static friction resistances acting on water drops. It is found that static friction resistance, reflected by the corresponding critical sliding angle, has a fourth-order function dependence on the surface potential as revealed by experiments and theoretical modeling. Interfacial charge transfer could either strengthen or weaken the surface potential up to the charge density carried by the water drops and substrates, thus resulting in the change of static friction resistance during sequential drop sliding. These findings apply to generalized problems for water at solid surfaces with charged interfaces (water, solid, or both are charged) and highlight the pivotal role of charge transfer at liquid-solid interfaces in governing drop motion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c01204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!