Effect of Acidic Beverages on the Hardness, Elastic Modulus and Wear Resistance of Giomer and Nongiomer Bulk-fill Materials.

Oper Dent

Fusun Ozer, DMD, PhD, Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Published: July 2023

Objectives: The aim of this study was to evaluate and compare the effect of acidic beverages on the hardness, elastic modulus, and wear resistance of four different resin-based restorative materials.

Methods And Materials: A total of 128 specimens (10 mm diameter, 4 mm thickness) were prepared from a conventional resin composite (Filtek Z250 [Z250]), a giomer bulk-fill (Beautifil Bulk Restorative [BBR]) and two nongiomer bulk-fill materials (Tetric N-Ceram Bulk Fill [TNC] and SonicFill 2 [SF2]). Each material group was divided into four subgroups (n=8) according to the storage media: artificial saliva (control), orange juice, regular Coke, and sports drink. The experimental specimens were immersed in the solutions for 30 minutes, five times a day for 5 days and kept in artificial saliva for an hour between the immersion periods. Control specimens were stored in artificial saliva for 5 days. The nanoindentation test with a Berkovich diamond tip was used to determine the hardness and elastic modulus before and after the 5-day storage periods. Following the nanoindentation tests, the specimens were subjected to a chewing simulator for 120,000 cycles. The specimens were then scanned with a three-dimensional scanner. The wear resistance was analyzed by measuring the volume and height loss. Specimens were observed by environmental scanning electron microscopy. The statistical analyses were performed by analysis of variance, Tukey HDS test, and paired samples t-test (α=0.05).

Results: Z250 showed significantly higher elastic modulus in all groups (p<0.05). After erosive cycles, the greatest decrease in hardness and elastic modulus was observed for BBR. TNC showed higher wear resistance than the other resin-based materials (p<0.05). The BBR specimens immersed in acidic solutions showed higher wear rates than the artificial saliva group (p<0.05).

Conclusions: Conventional resin composite showed higher hardness and elastic modulus than bulk-fill materials when exposed to acidic beverages but comparable or lower wear resistance. Degradation due to acidic beverages most affected the mechanical properties of giomer bulk-fill.

Download full-text PDF

Source
http://dx.doi.org/10.2341/22-063-LDOI Listing

Publication Analysis

Top Keywords

elastic modulus
16
hardness elastic
12
wear resistance
12
artificial saliva
12
acidic beverages
8
beverages hardness
8
modulus wear
8
nongiomer bulk-fill
8
bulk-fill materials
8
specimens
6

Similar Publications

A Force-Sensor-Less Approach for Rapid Young's Modulus Identification of Heterogeneous Soft Tissue.

J Biomech Eng

January 2025

State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanical Engineering, Zhejiang University, Hangzhou, 315000, China.

Due to individual differences, accurate identification of tissue elastic parameters is essential for biomechanical modeling in surgical guidance for hepatic venous injections. This paper aims to acquire the absolute Young's modulus of heterogeneous soft tissues during endoscopic surgery with 2D ultrasound images. First, we introduced a force-sensor-less approach that utilizes a pre-calibrated soft patch with a known Young's modulus and its ultrasound images to calculate the external forces exerted by the probe on the tissue.

View Article and Find Full Text PDF

The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.

View Article and Find Full Text PDF

Exploration of the dynamics of otic capsule and intracochlear pressure: Numerical insights with experimental validation.

J Acoust Soc Am

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.

View Article and Find Full Text PDF

Microfluidic-assisted sol-gel preparation of monodisperse mesoporous silica microspheres with controlled size, surface morphology, porosity and stiffness.

Nanoscale

January 2025

National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.

View Article and Find Full Text PDF

Influence of matrix stiffness on microstructure evolution and magnetization of magneto-active elastomers.

Soft Matter

January 2025

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, Dresden, 01069, Germany.

Field-induced microstructure evolution can play an important role in defining the coupled magneto-mechanical response of Magneto-Active Elastomers (MAEs). The behavior of these materials is classically modeled using mechanical, magnetic and coupled magneto-mechanical contributions to their free energy function. If the MAE sample is fully clamped so it cannot deform, the mechanical coupling is reduced to the internal microscopic deformations caused by the particles moving and deforming the elastic medium that surrounds them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!