AI Article Synopsis

  • Antibiotic resistance is a growing global health issue driven by bacterial mutations, and while drugs to combat this are underexplored, they hold promise for prolonging antibiotic effectiveness.
  • Researchers identified dequalinium chloride (DEQ), an FDA-approved drug, as a potential solution that inhibits the stress response linked to increased mutagenesis when using fluoroquinolone antibiotics like ciprofloxacin.
  • The study indicates that DEQ effectively slows bacterial evolution without promoting the emergence of resistant strains and shows its potential in real-world applications, such as mouse infections.

Article Abstract

Evolution of antibiotic resistance is a world health crisis, fueled by new mutations. Drugs to slow mutagenesis could, as cotherapies, prolong the shelf-life of antibiotics, yet evolution-slowing drugs and drug targets have been underexplored and ineffective. Here, we used a network-based strategy to identify drugs that block hubs of fluoroquinolone antibiotic-induced mutagenesis. We identify a U.S. Food and Drug Administration- and European Medicines Agency-approved drug, dequalinium chloride (DEQ), that inhibits activation of the general stress response, which promotes ciprofloxacin-induced (stress-induced) mutagenic DNA break repair. We uncover the step in the pathway inhibited: activation of the upstream "stringent" starvation stress response, and find that DEQ slows evolution without favoring proliferation of DEQ-resistant mutants. Furthermore, we demonstrate stress-induced mutagenesis during mouse infections and its inhibition by DEQ. Our work provides a proof-of-concept strategy for drugs to slow evolution in bacteria and generally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289659PMC
http://dx.doi.org/10.1126/sciadv.adg0188DOI Listing

Publication Analysis

Top Keywords

evolution antibiotic
8
antibiotic resistance
8
drugs slow
8
stress response
8
drugging evolution
4
resistance regulatory
4
regulatory network
4
network hub
4
hub evolution
4
resistance health
4

Similar Publications

Effects of Elexacaftor-Tezacaftor-Ivacaftor on Nasal and Sinus Symptoms in Children With Cystic Fibrosis.

Pediatr Pulmonol

January 2025

Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Boulevard Pinel, Lyon, France.

Background: New CFTR Modulator triple therapy Elexacaftor-Ivacaftor-Tezacaftor (ETI) prove efficacy in pulmonary outcomes. However, its impact on nasal sinus symptoms in children has not been specifically studied. The aim of this study is to evaluate the impact of this therapy on nasal sinus symptomatology in children aged 6-12 years.

View Article and Find Full Text PDF

Background: The global spread of antibiotic resistance presents a significant threat to human, animal, and plant health. Metagenomic sequencing is increasingly being utilized to profile antibiotic resistance genes (ARGs) in various environments, but presently a mechanism for predicting future trends in ARG occurrence patterns is lacking. Capability of forecasting ARG abundance trends could be extremely valuable towards informing policy and practice aimed at mitigating the evolution and spread of ARGs.

View Article and Find Full Text PDF

Genomic analysis of the main epidemiological lineages of in Mexico.

Front Cell Infect Microbiol

January 2025

Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Departamento de Diagnóstico Epidemiológico, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico.

has emerged as a critical global health threat due to its exceptional survival skills in adverse environment and its ability to acquire antibiotic resistance, presenting significant challenges for infection treatment and control. The World Health Organization has classified carbapenem-resistant as a "Critical Priority" pathogen to guide research and the development of control and prevention strategies. Epidemiological surveillance methodologies provide the tools necessary for classifying into international clonal lineages, facilitating the analysis of molecular characteristics, global dissemination, and evolution.

View Article and Find Full Text PDF

Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.

View Article and Find Full Text PDF

Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!