Plant pathogens are increasingly compromising forest health, with impacts to the ecological, economic, and cultural goods and services these global forests provide. One response to these threats is the identification of disease resistance in host trees, which with conventional methods can take years or even decades to achieve. Remote sensing methods have accelerated host resistance identification in agricultural crops and for a select few forest tree species, but applications are rare. Ceratocystis wilt of 'ōhi'a, caused by the fungal pathogen Ceratocystis lukuohia has been killing large numbers of the native Hawaiian tree, Metrosideros polymorpha or 'Ōhi'a, Hawaii's most common native tree and a biocultural keystone species. Here, we assessed whether resistance to C. lukuohia is detectable in leaf-level reflectance spectra (400-2500 nm) and used chemometric conversion equations to understand changes in leaf chemical traits of the plants as indicators of wilt symptom progression. We collected leaf reflectance data prior to artificially inoculating 2-3-year-old M. polymorpha clones with C. lukuohia. Plants were rated 3x a week for foliar wilt symptom development and leaf spectra data collected at 2 to 4-day intervals for 120 days following inoculation. We applied principal component analysis (PCA) to the pre-inoculation spectra, with plants grouped according to site of origin and subtaxon, and two-way analysis of variance to assess whether each principal component separated individuals based on their disease severity ratings. We identified seven leaf traits that changed in susceptible plants following inoculation (tannins, chlorophyll a+b, NSC, total C, leaf water, phenols, and cellulose) and leaf chemistries that differed between resistant and early-stage susceptible plants, most notably chlorophyll a+b and cellulose. Further, disease resistance was found to be detectable in the reflectance data, indicating that remote sensing work could expedite Ceratocystis wilt of 'ōhi'a resistance screenings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289452 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287144 | PLOS |
J Chem Ecol
November 2024
ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas, POB 6154, Campinas, SP, 13084-970, Brazil.
Fungi of the genus Ceratocystis are aggressive tree pathogens that cause serious diseases in several crops around the world. Ceratocystis wilt disease caused by C. cacaofunesta has been shown to be responsible for severe reductions in cacao production.
View Article and Find Full Text PDFFungal Biol
October 2024
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa. Electronic address:
Eucalyptus spp. in plantations are negatively affected by canker and wilt diseases caused by several species of Ceratocystis, particularly those in the Latin American Clade (LAC). Ceratocystis eucalypticola and Ceratocystis manginecans are of particular concern where disease epidemics are reported globally, with recent outbreaks emerging in South African and Indonesian Eucalyptus plantations.
View Article and Find Full Text PDFPlant Dis
July 2024
Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania 95123, CT, Italy.
Field surveys conducted during 2021 and 2022 in Western Sicily, Italy, revealed the presence of common fig trees severely affected by trunk and crown root canker and bark cracking. Moreover, in conjunction with the symptomatic tissues, the same surveyed plants showed the presence of bark beetle holes and internal wood galleries. The predominant beetle was previously reported attacking figs in Sicily.
View Article and Find Full Text PDFSci Rep
September 2023
Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil.
The genus Ceratocystis includes many phytopathogenic fungi that affect different plant species. One of these is Ceratocystis cacaofunesta, which is pathogenic to the cocoa tree and causes Ceratocystis wilt, a lethal disease for the crop. However, little is known about how this pathogen interacts with its host.
View Article and Find Full Text PDFPlants (Basel)
July 2023
Doctoral Program in Biotechnology and Biodiversity, Pro-Midwest Network, Cáceres 78210-778, Brazil.
Linn., also known as teak, is a highly valued species with adaptability to a wide range of climatic conditions and high tolerance to soil variations, making it an attractive option for both commercial and conservation purposes. In this sense, the classification of cultivated teak genotypes is crucial for both breeding programs and conservation efforts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!