Lichens are known to produce many novel bioactive metabolites. To date, approximately 1,000 secondary metabolites have been discovered, which are predominantly produced by the lichen mycobionts. However, despite the extensive studies on production of lichen secondary metabolites, little is known about the responsible biosynthetic gene clusters (BGCs). Here, we identified a putative BGC that is implicated in production of a red pigment, cristazarin (a naphthazarin derivative), in Cladonia metacorallifera. Previously, cristazarin was shown to be specifically induced in growth media containing fructose as a sole carbon source. Thus, we performed transcriptome analysis of C. metacorallifera growing on different carbon sources including fructose to identify the BGC for cristazarin. Among 39 polyketide synthase (PKS) genes found in the genome of C. metacorallifera, a non-reducing PKS (coined crz7) was highly expressed in growth media containing either fructose or glucose. The borders of a cristazarin gene cluster were delimited by co-expression patterns of neighboring genes of the crz7. BGCs highly conserved to the cristazarin BGC were also found in C. borealis and C. macilenta, indicating that these related species also have metabolic potentials to produce cristazarin. Phylogenetic analysis revealed that the Crz7 is sister to fungal PKSs that biosynthesize an acetylated tetrahydoxynaphthalene as a precursor of melanin pigment. Based on the phylogenetic placement of the Crz7 and putative functions of its neighboring genes, we proposed a plausible biosynthetic route for cristazarin. In this study, we identified a lichen-specific BGC that is likely involved in the biosynthesis of a naphthazarin derivative, cristazarin, and confirmed that transcriptome profiling under inducing and non-inducing conditions is an effective strategy for linking metabolites of interest to biosynthetic genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10289310 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287559 | PLOS |
PLoS One
June 2023
Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea.
Lichens are known to produce many novel bioactive metabolites. To date, approximately 1,000 secondary metabolites have been discovered, which are predominantly produced by the lichen mycobionts. However, despite the extensive studies on production of lichen secondary metabolites, little is known about the responsible biosynthetic gene clusters (BGCs).
View Article and Find Full Text PDFJ Fungi (Basel)
July 2021
Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea.
Lichens are a natural source of bioactive compounds. var. KoLRI002260 is a rare lichen known to produce phenolic compounds, such as rhodocladonic, thamnolic, and didymic acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!