Technological advances define shifting pathway signaling from normal to primary and metastatic colorectal cancer.

Growth Factors

Sir Peter MacCallum Department of Oncology and Peter MacCallum Cancer Centre, The University of Melbourne, Parkville, Australia.

Published: October 2023

Adoption of organoid/tumoroid propagation of normal and malignant intestinal epithelia has provided unparalleled opportunities to compare cell growth factor and signaling dependencies. These 3D structures recapitulate tumours in terms of gene expression regarding the tumor cells but also allow deeper insights into the contribution of the tumour microenvironment (TME). Elements of the TME can be manipulated or added back in the form of infiltrating cytotoxic lymphocytes and/or cancer associated fibroblasts. The effectiveness of chemo-, radio- and immunotherapies can be explored within weeks of deriving these patient-derived tumour avatars informing treatment of these exact patients in a timely manner. Entrenched paths to colorectal cancer (CRC) from the earliest steps of conventional adenoma or serrated lesion formation, and the recognition of further sub-categorisations embodied by consensus-molecular-subtypes (CMS), provide genetic maps allowing a molecular form of pathologic taxonomy. Recent advances in organoid propagation and scRNAseq are reshaping our understanding of CMS and CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08977194.2023.2227274DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
8
technological advances
4
advances define
4
define shifting
4
shifting pathway
4
pathway signaling
4
signaling normal
4
normal primary
4
primary metastatic
4
metastatic colorectal
4

Similar Publications

New insights into the role of complement system in colorectal cancer (Review).

Mol Med Rep

March 2025

Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China.

Colorectal cancer (CRC) is one of the most common cancers worldwide. With the growing understanding of immune regulation in tumors, the complement system has been recognized as a key regulator of tumor immunity. Traditionally, the complement cascade, considered an evolutionarily conserved defense mechanism against invading pathogens, has been viewed as a crucial inhibitor of tumor progression.

View Article and Find Full Text PDF

RNA Modification and Digestive Tract Tumors: A Review.

Curr Med Chem

January 2025

Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.

Gastrointestinal tumors, including colorectal and liver cancer, are among the most prevalent and lethal solid tumors. These malignancies are characterized by worsening prognoses and increasing incidence rates. Traditional therapeutic approaches often prove ineffective.

View Article and Find Full Text PDF

Introduction: Despite the established influence of gut bacteria, the role of the gut virome in modulating colorectal cancer (CRC) patient chemotherapy response remains poorly understood. In this study, we investigated the impact of antiviral (AV) drug-induced gut virome dysbiosis on the efficacy of 5-FU in CRC treatment.

Methods: Using a subcutaneous CRC mouse model, we assessed tumor growth and immune responses following AV treatment, fecal microbiota transplantation (FMT), and 5-FU administration.

View Article and Find Full Text PDF

Background Various studies have evaluated the quality of health-related information on TikTok (ByteDance Ltd., Beijing, China), including topics such as COVID-19, diabetes, varicoceles, bladder cancer, colorectal cancer, and others. However, there is a paucity of data on studies that examined TikTok as a source of quality health information on human papillomavirus (HPV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!