A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemically reduced graphene oxide films from Zn-C battery waste for the electrochemical determination of paracetamol and hydroquinone. | LitMetric

AI Article Synopsis

  • Development of electroanalytical chemistry is advanced through using electrochemically reduced graphene oxide (ERGO) films made from recycled graphite from discarded Zn-C batteries.
  • The synthesis of graphene oxide (GO) was confirmed using multiple characterization techniques, and ERGO films displayed superior electrochemical properties when tested with various analytes.
  • The ERGO-based sensors demonstrated high analytical sensitivity and effectiveness in detecting compounds like paracetamol and hydroquinone in synthetic urine and tap water, making them a cost-effective, eco-friendly option for creating electrochemical sensors.

Article Abstract

Contributing to the development of sustainable electroanalytical chemistry, electrochemically reduced graphene oxide (ERGO) films obtained from residual graphite of discharged Zn-C batteries are proposed in this work. Graphite from the cathode of discarded Zn-C batteries was recovered and used in the synthesis of graphene oxide (GO) by the modified Hummer's method. The quality of the synthesized GO was verified using different characterization methods (FT-IR, XRD, SEM, and TEM). GO films were deposited on a glassy carbon electrode (GCE) by the drop coating method and then electrochemically reduced by cathodic potential scanning using cyclic voltammetry. The electrochemical features of the ERGO films were investigated using the ferricyanide redox probe, as well as paracetamol (PAR) and hydroquinone (HQ) molecules as model analytes. From the cyclic voltammetry assays, enhanced heterogeneous electron transfer rate constants (k) were observed for all redox systems studied. In analytical terms, the ERGO-based electrode showed higher analytical sensitivity than the bare and GO-modified GCE. Using differential pulse voltammetry, wide linear response ranges and limits of detection of 0.14 μmol L and 0.65 μmol L were achieved for PAR and HQ, respectively. Furthermore, the proposed sensor was successfully applied to the determination of PAR and HQ in synthetic urine and tap water samples (recoveries close to 100%). The outstanding electrochemical and analytical properties of the proposed ERGO films are added to the very low cost of the raw material, being presented as a green-based alternative for the development of electrochemical (bio)sensors with unsophisticated resources.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-023-05858-0DOI Listing

Publication Analysis

Top Keywords

electrochemically reduced
12
graphene oxide
12
ergo films
12
reduced graphene
8
zn-c batteries
8
cyclic voltammetry
8
films
5
oxide films
4
films zn-c
4
zn-c battery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!