Photo-switching compounds are widely used as super-resolution imaging agents, anti-counterfeiting dyes, and molecules that are able to control drug-receptor interactions. However, advancement of this field has been limited by the number of classes of molecules that exhibit this phenomenon, and thus there are growing activities to discover new photo-switching compounds that diversify and improve current applications and include the so-called donor-acceptor Stenhouse adducts. Herein, a new class of compounds, phenylindole alkene dimers, are presented as a novel class of photochromic molecules that exhibit photo-switching in the solid state. The synthesis of a small library of these compounds allowed the tuning of their optical properties. Surfaces coated with these photo-switches can be used as writable materials in a variety of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10282750PMC
http://dx.doi.org/10.3389/fchem.2023.1205452DOI Listing

Publication Analysis

Top Keywords

novel class
8
class photochromic
8
photochromic molecules
8
photo-switching solid
8
solid state
8
photo-switching compounds
8
molecules exhibit
8
molecules
4
molecules exhibiting
4
photo-switching
4

Similar Publications

Background/objectives: This protocol describes a study to investigate the feasibility and preliminary efficacy of a novel Teaching Kitchen Multisite Trial (TK-MT) for adults with cardiometabolic abnormalities. The TK-MT protocol describes a hybrid lifestyle intervention combining in-person and virtual instruction in culinary skills, nutrition education, movement, and mindfulness with community support and behavior change strategies. This 18-month-long randomized controlled trial aims to evaluate the feasibility of implementing a 12-month, 24 class program, assess preliminary study efficacy, and identify barriers and facilitators to implementation.

View Article and Find Full Text PDF

Cross-Modal Collaboration and Robust Feature Classifier for Open-Vocabulary 3D Object Detection.

Sensors (Basel)

January 2025

The 54th Research Institute, China Electronics Technology Group Corporation, College of Signal and Information Processing, Shijiazhuang 050081, China.

The multi-sensor fusion, such as LiDAR and camera-based 3D object detection, is a key technology in autonomous driving and robotics. However, traditional 3D detection models are limited to recognizing predefined categories and struggle with unknown or novel objects. Given the complexity of real-world environments, research into open-vocabulary 3D object detection is essential.

View Article and Find Full Text PDF

Mesoscale eddies are pivotal oceanographic phenomena affecting marine environments. Accurate and stable identification of these eddies is essential for advancing research on their dynamics and effects. Current methods primarily focus on identifying Cyclonic and Anticyclonic eddies (CE, AE), with anomalous eddy identification often requiring secondary analyses of sea surface height anomalies and eddy center properties, leading to segmented data interpretations.

View Article and Find Full Text PDF

Existing autonomous driving systems face challenges in accurately capturing drivers' cognitive states, often resulting in decisions misaligned with drivers' intentions. To address this limitation, this study introduces a pioneering human-centric spatial cognition detecting system based on drivers' electroencephalogram (EEG) signals. Unlike conventional EEG-based systems that focus on intention recognition or hazard perception, the proposed system can further extract drivers' spatial cognition across two dimensions: relative distance and relative orientation.

View Article and Find Full Text PDF

This paper presents a novel rail-to-rail Class-AB operational amplifier tailored for wake-up systems in motion sensor applications. By addressing limitations in free Class-AB designs, such as large inrush current, unstable bias conditions, and area ineffiiency, the proposed design achieves a gain of 59 dB and unity gain frequency of 550 kHz driving a 5 pF load. The inrush current is reduced from 1 mA to 7 µA, increasing the battery life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!