Recycling used mixed material additively manufactured electroanalytical sensors into new 3D-printing filaments (both conductive and non-conductive) for the production of new sensors is reported herein. Additively manufactured (3D-printed) sensing platforms were transformed into a non-conductive filament for fused filament fabrication through four different methodologies (granulation, ball-milling, solvent mixing, and thermal mixing) with thermal mixing producing the best quality filament, as evidenced by the improved dispersion of fillers throughout the composite. Utilizing this thermal mixing methodology, and without supplementation with the virgin polymer, the filament was able to be cycled twice before failure. This was then used to process old sensors into an electrically conductive filament through the addition of carbon black into the thermal mixing process. Both recycled filaments (conductive and non-conductive) were utilized to produce a new electroanalytical sensing platform, which was tested for the cell's original application of acetaminophen determination. The fully recycled cell matched the electrochemical and electroanalytical performance of the original sensing platform, achieving a sensitivity of 22.4 ± 0.2 μA μM, a limit of detection of 3.2 ± 0.8 μM, and a recovery value of 95 ± 5% when tested using a real pharmaceutical sample. This study represents a paradigm shift in how sustainability and recycling can be utilized within additively manufactured electrochemistry toward promoting circular economy electrochemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284352PMC
http://dx.doi.org/10.1021/acssuschemeng.3c02052DOI Listing

Publication Analysis

Top Keywords

additively manufactured
16
thermal mixing
16
circular economy
8
economy electrochemistry
8
recycling mixed
8
mixed material
8
material additively
8
electroanalytical sensing
8
sensing platforms
8
filaments conductive
8

Similar Publications

Lanthanide-polyoxometalate-based self-erasing luminescent hydrogels with time-dependent and resilient properties for advanced information encryption.

Mater Horiz

January 2025

Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

In such an era of information explosion, improving the level of information security is still a challenging task. Self-erasing luminescent hydrogels are becoming ideal candidates for improving the level of information security with simple encryption and decryption methods. Herein, a lanthanide-polyoxometalate-based self-erasing luminescent hydrogel with time-dependent and resilient properties was constructed through a covalent crosslinked network constructed with polyacrylamide and a non-covalent crosslinked network constructed with [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride/NaDyWO, along with doping urease.

View Article and Find Full Text PDF

Rare Cell Population Analysis in Early-Stage Breast Cancer Patients.

Breast Cancer (Auckl)

January 2025

Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Background: Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy.

Objectives: We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology.

View Article and Find Full Text PDF

Introduction: In recent years, numerous hospitals have established in-house three-dimensional (3D) printing centers, enabling health-care facilities to leverage the transformative capabilities of additive manufacturing technology on their premises. With this emerging opportunity arises a necessity to undertake a thorough assessment of the manufactured tools employed in clinical practice. The objectives of this article are to describe the pathway of in-house printing and evaluate the accuracy of 3D-printed specific instruments.

View Article and Find Full Text PDF

The manufacturing of thin films through selective laser sintering of micro/nanoparticles is an emerging technology that has been developing rapidly over the last two decades owing to its digitization, efficiency, and good adaptability to various materials. However, high-quality laser sintering of different materials remains a challenge: ceramic particles are difficult to be sintered due to low absorbance; metallic particles are prone to oxidation; semiconductor particles are difficult to process for performance enhancement due to high stress. In this work, a new approach is proposed that employs an additional Indium Tin Oxide (ITO) sacrificial layer to assist laser sintering of different functional materials, which detaches after sintering without contaminating the target material.

View Article and Find Full Text PDF

Effects of ORF14 gene on melanin expression, fermentation conditions and properties of melanin production in modified strains.

J Biotechnol

January 2025

Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing, 100048 China.

Melanin with antioxidant and antibacterial properties can be used in food, cosmetics, biotechnology, and other fields, but its insolubility become a main challenge hindering for its application. In this study, water-soluble melanin produced by the novel species Streptomyces vilmorinianum YP1 was characterized using scanning electron microscopy (SEM), UVvisible spectroscopy (with an absorption peak at 220nm), and Fourier transform infrared (FTIR) spectroscopy. The glycosyltransferase gene ORF14 was knocked out, which improved the production of water-soluble melanin by inhibiting competitive pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!