Sigma 1 Receptor (S1R) is a therapeutic target for a wide spectrum of pathological conditions ranging from neurodegenerative diseases to cancer and COVID-19. S1R is ubiquitously expressed throughout the visceral organs, nervous, immune and cardiovascular systems. It is proposed to function as a ligand-dependent molecular chaperone that modulates multiple intracellular signaling pathways. The purpose of this study was to define the S1R proximatome under native conditions and upon binding to well-characterized ligands. This was accomplished by fusing the biotin ligase, Apex2, to the C terminus of S1R. Cells stably expressing S1R-Apex or a GFP-Apex control were used to map proximal proteins. Biotinylated proteins were labeled under native conditions and in a ligand dependent manner, then purified and identified using quantitative mass spectrometry. Under native conditions, S1R biotinylates over 200 novel proteins, many of which localize within the endomembrane system (endoplasmic reticulum, Golgi, secretory vesicles) and function within the secretory pathway. Under conditions of cellular exposure to either S1R agonist or antagonist, results show enrichment of proteins integral to secretion, extracellular matrix formation, and cholesterol biosynthesis. Notably, Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) displays increased binding to S1R under conditions of treatment with Haloperidol, a well-known S1R antagonist; whereas Low density lipoprotein receptor (LDLR) binds more efficiently to S1R upon treatment with (+)-Pentazocine ((+)-PTZ), a classical S1R agonist. Furthermore, we demonstrate that the ligand bound state of S1R correlates with specific changes to the cellular secretome. Our results are consistent with the postulated role of S1R as an intracellular chaperone and further suggest important and novel functionalities related to secretion and cholesterol metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284605PMC
http://dx.doi.org/10.3389/fcell.2023.1045759DOI Listing

Publication Analysis

Top Keywords

s1r
12
native conditions
12
sigma receptor
8
s1r agonist
8
conditions
6
defining ligand-dependent
4
ligand-dependent proximatome
4
proximatome sigma
4
receptor sigma
4
receptor s1r
4

Similar Publications

Aims: Sigma-1 receptor (S1R) activation was recently identified as a promising target for preventing diabetic nephropathy (DN) by mitigating hypoxia, oxidative stress, and inflammation. This study aimed to investigate the potential reno-protective effect of the S1R agonist afobazole against streptozotocin (STZ)-induced DN in rats compared to metformin.

Materials And Methods: Rats were split into six groups: the normal control group; the diabetic control group received STZ (55 mg/kg i.

View Article and Find Full Text PDF

Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders.

ACS Pharmacol Transl Sci

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions.

View Article and Find Full Text PDF

Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis.

Neuropharmacology

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt.

Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy.

View Article and Find Full Text PDF

Building on our previous studies, which have demonstrated that homochiral propagating species-(*,*)-[MeGa(-OCH(Me)COR)]-were crucial for the heteroselectivity of [MeGa(-OCH(Me)COMe)] in the ring-opening polymerization (ROP) of racemic lactide (-LA), we have investigated the effect of alkyl groups on the structure and catalytic properties of dialkylgallium alkoxides in the ROP of -LA. Therefore, we have isolated and characterized the -[RGa(-OCH(Me)COMe] (R = Et (), Pr () and -[RGa(-OCH(Me)CHN] (R = Et (), Pr ()) complexes, to demonstrate the effect of alkyl groups on the chiral recognition induced the formation of the respective homochiaral species-(*,*)-[RGa(-OCH(Me)COMe)] and (*,*)-[RGa(-OCH(Me)CHN]. Moreover, we have investigated the structure of (,)-[RGa(-OCH(Me)COMe] (R = Et ((,)-, R = Pr ((,)-,) and their catalytic activity in the ROP of -LA.

View Article and Find Full Text PDF

Sigma-1 Receptor as a Novel Therapeutic Target in Diabetic Kidney Disease.

Int J Mol Sci

December 2024

MTA-SE Lendület "Momentum" Diabetes Research Group, 1083 Budapest, Hungary.

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with fluvoxamine (FLU) protects against acute kidney injury by inhibiting inflammation and ameliorating the effect of hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!