The exceptional properties of liquid water such as thermodynamic, physical, and dielectric anomalies originate mostly from the hydrogen-bond networks of water molecules. The structural and dynamic properties of the hydrogen-bond networks have a significant impact on many biological and chemical processes in aqueous systems. In particular, the properties of interfacial water molecules with termination of the network at a solid surface are crucial to understanding the role of water in heterogeneous reactions. However, direct monitoring of the dynamics of hydrogen-bonded interfacial water molecules has been limited because of the lack of a suitable surface-selective spectroscopic means in the terahertz (THz) frequency range where collective vibrations of water exist. Here we show that hydrogen-bond vibrations below 9 THz can be measured at an electrochemical interface, which is buried between two THz-opaque media, by using a density of states format of surface-enhanced inelastic light scattering spectra. The interpretation of the obtained spectra over the range 0.3-6 THz indicates that the negatively charged surface accelerates collective translational motions of water molecules in the lateral direction with the increase of hydrogen-bond defects. Alternatively, the positively charged surface results in suppression of lateral mobility. This work gives a new perspective on spectroscopic investigations in heterogeneous reactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10284101 | PMC |
http://dx.doi.org/10.1039/d3sc01734f | DOI Listing |
Sci Total Environ
January 2025
China National Environmental Monitoring Centre, Beijing 100012, China.
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.
View Article and Find Full Text PDFSmall
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.
View Article and Find Full Text PDFIn this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).
Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).
J Chem Phys
January 2025
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers' persistent quest for higher precision force fields and the prevailing challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!